PUTTING NHS RESEARCH ON THE MAP

An analysis of scientific publications in England, 1990-97

NHS
Executive

PUTTING NHS RESEARCH ON THE MAP

An analysis of scientific publications in England, 1990-97

Acknowledgements

Contributors: Jonathan Grant and Sally Davies conceived and coordinated the study. The protocol was developed by Jonathan Grant and Michael Yare. Data analysis and report writing was undertaken by Jonathan Grant, Michael Yare, Sonya Kelly and Philip Green. Helpful comments on early drafts were received from Sally D avies, Mark Taylor, Howard Scarffe and the project's steering group.

We would like to express our thanks for the valuable contribution made by the project's steering group: Professor A Aynsley-Green, Professor Tom Burns, Mr David Highton, Professor Richard J Lilford, Mr Marc Taylor, Dr Stuart Turner and Professor Jennifer W ilsonBarnet. We would also like to thank Professor Martin Buxton and Dr Steve Hanney for commenting on various drafts of this report. The clinical subfield analysis, included in this report, was made possible by the work of a number of external experts, who kindly volunteered their time. We would also like to acknowledge the valuable support this research received from Grant Lewison, Robert Cottrell and Terry Cacutt.

Contents

Acknowledgements 2
List of Figures,Tables and Boxes 4
Foreword 5
Executive summary 6
Chapter 1: Introduction 8
The use and abuse of bibliometrics 8
Mapping the N HS landscape 12
Chapter 2: Measuring NHS research outputs 14
The development of RO D 14
The development of the NHS research outputs dataset 14
Defining NHS research outputs 15
Defining health services research 18
Counting publications 18
Identifying funding sources 18
Subfield definition 19
Classifying research 20
Measuring impact 20
Summary 21
Chapter 3: Results - An analysis of scientific publications in the NHS 22
Producing research - the number of publications 22
W orking in partnership 24
Funding support 26
Research levels 27
Subfields 28
The impact of research 28
Oncology research 30
M ental health research 32
Summary 34
Chapter 4: Policy implications for R\&D management 35
Using bibliometrics to assess clinical research 35
Policy implications and research agenda 37
Supporting high-impact research 37
Support for basic research in the NHS 38
The effectiveness and efficiency of partnership 39
Future development of the N HS research outputs dataset 41
Annex: Methodology 42
Appendix: Subfield analysis 46
References 68

List of Figures, Tables and Boxes

Figure 1.1: Categories of payback 12
Figure 1.2: 0 utline input-output model for assessing the payback 12
Figure 2.1: \quad Schematic representation illustrating the construction of the N HS dataset 16
Figure 2.2: \quad Schematic representation illustrating how W -values were calculated for 21 each subfield

Figure 3.1: \quad Number of research publications in the UK, England, the N HS and the 22 W ellcome Trust/N HS

Figure 3.2: \quad Map of England, showing output of N HS papers by region (1990-97) 23
Figure 3.3: Average number of authors and addresses for English, N HS, and W ellcome 24 Trust/N HS papers (1990-97)
Figure 3.4: International co-authorship on English, N HS, and W ellcome Trust/N HS 25 papers (1990-97)
Figure 3.5: Map of England, showing collaboration between the London region and other 25 N HS regions
Figure 3.6: \quad N umber of English, N HS and W ellcome Trust/N HS papers 26 (1990-97) with a given number of acknow ledged funding bodies
Figure 3.7: Proportion of papers acknowledging funding from a sector - English and 26 N HS papers (1990-97)
Figure 3.8: Research level of English, N HS , and W ellcome Trust/N HS papers (1990-97) 29
Figure 3.9: Research level of high-impact (W 4) oncology papers for England, the 32 N HS, London, and the W ellcome Trust/N HS (1990-97)
Figure 3.10: \quad Proportion of high-impact (W 4) NHS papers, by funding source for 34 mental health and oncology research
Table 2.1: N HS funding bodies 16
Table 2.2: Postcode coverage of three groups of N HS sites 17
Table 2.3: List of additional HSR journals included in RO D 17
Table 2.4: List of 24 biomedical subfields used in study 19
Table 2.5: Definition of research levels 20
Table 3.1: \quad N umber of N H S papers acknowledging main sectors and subsectors 27
Table 3.2: \quad Distribution of research levels of N HS and W ellcome Trust/N HS papers, 1990-97 28
Table 3.3: Proportion of biomedical papers in 24 selected subfields, 1990-97 29
Table 3.4: Distribution of five-year impact factors for English outputs, determining 30 impact categories, W, for 24 subfields
Table 3.5: Profile of oncology research 31
Table 3.6: Profile of mental health research 33
Table 4.1: Research level of unacknowledged papers 38
Table 4.2: Illustrative example of the effectiveness and efficiency of research 40 by NHSE region
Box A: Economic returns from research 9
Box B: An evaluator's toolkit 10
Box C: The NHS R\&D Strategy 11
Box D: The W ellcome Trust's Corporate Plan 13
Box E: $\quad 0$ rganization Codes Service 15
Box F: Measuring citations on clinical guidelines 36
Box G: Research and Development for a First Class Service 39

Foreword

The N H S Research and Development (R\&D) Programme was established in direct response to a H ouse of Lords Select C ommittee on Science and Technology report in 1988. It was felt that the NHS as 'customer' for research should not only 'articulate its needs' but also 'assist in meeting'. Since that time funding mechanisms have and continue to change and develop while the core aims of the over $£ 400$ million R\&D budget spent each year by the NHS remain.

Research funders need to be able to review the output and impact resulting from their support in order to plan future strategies at the macro level and make decisions at the micro level. A number of studies and evaluations to inform policy development have been funded by the NH S R\&D Directorate.

This study was commissioned by the London NHS region on behalf of the NHS R\&D Directorate of England and co-funded by the Wellcome Trust in order to benchmark N H S research outputs. The aims were to act as an information source for policy makers to support decision making and funding allocations, to demonstrate the usefulness of bibliometric indicators in R\&D evaluation, and to develop a standard set of indicators for future evaluations of research outputs.

Further development of the NHS R\&D funding system means this work takes on a new relevance. Better understanding of measures of research outputs - of which publications will form one part - will be important as research programmes are assessed through reports of activity, productivity and output against milestones.

NHS Priorities \& Needs (R\&D) Funding will strongly favour ministerial priority areas and work designed to maximize its impact on NH S decision making. Bibliometric indicators may provide one strand of evidence to help in assessing which research active NHS organizations can be considered the leaders in a particular field.

Similarly, for the Wellcome Trust, this research is timely. Last year the Trust published its first Corporate Plan which highlighted clinical, patient-oriented research as an area
where the Trust would enhance funding. This report will provide a useful insight into how the Trust's funds have been used to undertake research within the NHS and guide our planning processes for the future.

Improved understanding of the impact of research outputs is consistent with the push towards improving NHS knowledge management and the desire of funding bodies to show payback for their research spend. Bibliometrics takes account of the relative impact of articles emanating from different specialties according to where they are published instead of being just a crude measure of the number of publications. Bibliometric analysis repeated over time might provide a means of assessing the impact of organizational change or variations in funding.

The methodology presented, this report and the Research 0 utputs D atabase (ROD) itself are an essential part of the evaluation evidence base for research funding in the health sector in the future.

Professor Sally C D avies

Regional Director of Research \& D evelopment NHSE London

Dr H oward Scarffe

M edical Director
The Wellcome Trust

Executive summary

The United Kingdom invests nearly $£ 3.5$ billion in medical research from public and private sources per year. Bibliometric indicators are one of a number of techniques that can be used to assess the impact of research. This project aims to 'map' research outputs for the National Health Service (NHS) in England, in order to:

- provide an information source for policy makers;
- demonstrate the usefulness of bibliometric indicators in research and development (R\&D) evaluation;
- develop a standard set of indicators for future evaluations of research outputs;
- support decision making in funding allocations.

A dataset of NHS research outputs (i.e. research publications) was defined using peer-reviewed literature in England for the years 1990-97, collated from the W ellcome Trust's Research 0 utputs D atabase (ROD). Funding acknow ledgements, an address filter and a comprehensive list of NHS postcodes and addresses were combined to create an NHS dataset. The research papers were also classified by a number of other criteria: by 24 biomedical subfields; by the nature of the research into four levels from 'basic' to 'clinical observation'; and by impact.

The NHS in England supports over 13500 research publications a year. Between the years 1990-97 the average annual growth of NHS research outputs was 2.96%, compared to 3.87% for England as a whole.The W ellcome Trust, whilst supporting just under 8000 papers in the NHS between 1990-97, has a far greater average annual growth (9.67%). The London region of the NHS accounts for half of all research outputs. The next largest region in terms of output is the South East (14\%), followed by the N orth W est (13\%), Trent (12\%), N orthern and Yorkshire (9\%), W est Midlands (8\%), South W est (7\%) and Eastern (6\%).

Investigation of the collaborative nature of the N HS research revealed that:

- there was an increased tendency for researchers and institutions to collaborate and, on average, NHS papers have more authors and more addresses than other papers in England;
- around 6% of NHS papers include a USA address;
- the level of international collaboration on NHS papers is less than it is for England;
- the London NHS region is co-authoring more interregional research with the other NHS regions;
- W ellcome Trust papers have a greater number of authors and addresses than either the NHS or England as a whole.

Examination of funding support showed that:

- for 47% of NHS papers, funding was 'unacknowledged' - a considerably greater proportion than that of papers for England as a whole (37\%);
- multiple funding was associated with high-impact journals;
- between 1990 and 1997, the UK Government contributed to 29% of all NHS biomedical research papers; the private non-profit-sector contributed to 32% (the W ellcome Trust 7\%); and the industrial sector 13%. The combined public sector contributed to 76% of all outputs. These proportions add up to more than 100% because it is possible for more than one sector to fund each paper;
- during the study period Government funding, as a proportion of all funding, declined, whilst the private non-profit sector and industry increased their relative share of research outputs;
- explicitly acknowledged support from the Government sector, private non-profit sector and industry is lower in the N HS than for England.

The exploration of the balance between basic and clinical research, unsurprisingly, showed that the NHS produces proportionately more clinical observation papers than England as a whole. Interestingly, over the eight-year period of the study, basic research in the N HS has increased in terms of output by over 5% a year, although there was a decline in 1996 and 1997. This seems in part due to increased funding by the W ellcome Trust whose basic research funding increased year on year by 13%. In contrast, NHS clinical research outputs were relatively stable over this period, growing at a rate less than that for all N HS publications.

Finally, the report assesses whether bibliometrics are an appropriate tool to evaluate clinical research and identify the major policy issues arising from the study.

The United Kingdom invests nearly $£ 3.5$ billion² in medical research

 from public and private sources per year ${ }^{12}$. In some cases, this is spent on improving our understanding of biology. Elsewhere, it is used to test the effectiveness of new drugs, devices or techniques on patient populations. In between this spectrum of 'basic' and 'applied' research is a breadth of activity that is ultimately united by its aim in improving health.What sort of return do we get from this investment? A recent report from the USA, Exceptional Returns (see Box A), estimated that the total economic value of reduced cardiovascular mortality averaged $\$ 1.5$ trillion annually between 1970 and 1990. The report surmises that if just one third of this was because of medical research, then the return on the investment would be about $\$ 500$ billion a year - a figure 20 times greater than the average annual spend on medical research in the $U S A^{3}$. This is an astonishing return on investment, albeit based on a number of potentially heroic assumptions. However, this type of aggregate statistic does not help inform the day-to-day decisions faced by research funders, whether Government, industry or the medical research charities. Not independent from the need for more specific management information, funding organizations - especially those financed by the taxpayer - are being asked to show value for their research expenditure. Therefore, the ability to measure accurately the outputs and outcomes of research, and to attribute this to a funding source, is becoming ever more important.

Such data enable funders to demonstrate accountability and good research governance to stakeholders; have the potential to enhance public perception and understanding of biomedical science and the scientific process; and help to develop more effective R\& D strategies to increase the likelihood of 'successful' research outcomes ${ }^{4,5}$.

The use and abuse of bibliometrics

Traditionally, the output of scientific research has focused on contributions to knowledge, as measured by the number and impact of scientific papers in the peer-reviewed literature. For example, the US National Science Board makes an annual assessment of national performance by publishing counts of scientific papers and patents in its N ational Indicators series ${ }^{6}$. Likewise, in the UK, the Research Assessment Exercise evaluation of university departments includes the submission of scientific papers as part of assessment proce dures'. These types of bibliometric analyses have attracted their critics ${ }^{8}$, not least because they have been used in isolation of other methodologies and failed to use multiple indicators in the assessment of research ${ }^{9}$.

BoxA - Economic returns from research

The primary reason why most organizations fund biomedical research is to improve human health. However, since research programmes involve the expenditure of considerable quantities of public (and private) funds, those advocating increases or maintenance in funding for research often seek to quantify the benefits of such research in economic terms.

Recently, the US-based Mary W oodward Lasker Charitable Trust commissioned research from nine leading economists which allowed the economic value of extended life to be compared with national Gross Domestic Product.The conclusion was that the likely returns from future medical research are extremely high and that increases in life expectancy between 1970 and 1990 were worth $\$ 57$ trillion to Americans.

W hile it is very difficult, and offensive to some, to attempt to put a dollar value on human life, this is precisely what this report attempts to do.The value of lives saved by medical research was calculated in two steps:

1. Estimating the monetary value of better health and longer life.

A value of approximately $\$ 5$ million per life was inferred from studies asking people how much they would need to be compensated for incurring some known risk to their lives.

- It was recognized that the economic value of saving a life will be different for people at
different ages (e.g. less for a person of 90 than one of 30 years of age) and the economic value for life used in this study reflected this.
- In the absence of a plausible measure for improvements in health and wellbeing it was considered that the benefits calculated solely on the basis of longevity will be conservative.

2. Deciding how much of the life gain experienced over the period 1970-1990 is due to medical research.

- Some of the gains in life over this period were a result of new drugs and treatment proto cols - a result of medical research.
- Other gains in life can be attributed to changes in public policy and lifestyle, some of which can be attributed to information derived from medical research.

Of course the benefits of people living longer must be weighed against the increased costs of pensions as people live for many years past the current retirement age ${ }^{16}$. However, it is possible that as the age structure in developed countries changes and the ratio of young people in the workforce decreases, many people may be encouraged to remain working beyond the age of 65 .

The idea that a clinician would make a decision which is based on a single piece of observational data would be universally rejected in this era of 'evidence-based medicine'. Yet, medical audit - which is based on observational data - is an accepted tool for identifying best practice, benchmarking, and improving clinical standards. The analogy between medical audit and bibliometric analysis is strong - in both cases such information is useful, but it should never be used in isolation from other independent sources of evidence. Fundamentally, both sets of information should be used to generate hypotheses, rather than to provide conclusive evidence on a particular policy or intervention. In other words, bibliometric indicators provide one element of a research eval-
uator's toolkit and there are a number of other techniques that could and should be used in assessing the impact of research ${ }^{10}$ (see Box B, p. 10). Indeed, in evaluating research, the most important decision is to choose the appropriate methodology for the research objectives of a particular programme or funder.
O ver the past decade an increasing body of literature has been published looking at methodologies for measuring the 'payback' on research ${ }^{11,12,13}$. The seminal thesis of this work is the identification of a number of multidimensional 'payback categories' as listed in Figure 1.1 (p. 12). The relative importance of each category will depend upon the (often not stated) objectives of the research. For example, one of the purposes of the NHS R\&D Strategy is to 'provide new

Box B - An evaluator's toolkit

As a result of a set of budget reform measures in the USA, intended to increase the effectiveness and efficiency of Government, there was a need for all US Government-funded agencies to develop outcome measures. In early 1998 a series of workshops were
held to generate ideas on how to develop performance assessments for organizations funding research ${ }^{10}$. These workshops identified six methods of evaluating research - the pros and cons of each are summarized below.

Method	Pro	Con
Bibliometric analysis	- Q uantitative - measures volume of output - U seful to see global trends - O bjective, repeatable analysis possible	- Estimates of quality may not be reliable - Difficult to compare across fields - Careful interpretation needed - May be skewed by the biases in the available data
Economic rate of return	Q uantitative - estimates the economic benefits of research	- Focuses on financial benefits rather than social or health/quality - Requires many assumptions which may be controversial/unreliable
Peer review	- W ell understood and accepted - Provides qualitative informed evaluation	- Time consuming for experts - Concerns regarding objectivity and variability of results - Focuses mainly on quality to the exclusion of relevance etc.
Case studies	- Provides in-depth understanding - Informs reform of systems - Illustrates all types of benefits of research	- N ot necessarily comparable - Single study may not be representative
Retrospective analysis	Useful to identify linkages between funding programmmes and innovations over time	- N ot useful for short-term evaluation as time lag between research and outcomes may be many years
Benchmarking	Useful tool for comparison across programmes and countries	- Focuses on fields not research programmes

O ther observations made at these workshops include:

- it is important to choose carefully what will be measured and how, since the method chosen will usually change the behaviour of the people being measured;
- measuring performance is often more difficult for basic research compared to applied research due to time lags and the range of external contributing factors;
- the practical outcomes of research cannot be captured by quantitative methods alone.

See: www.nap.edu/catalog/6416.html
knowledge ${ }^{14}$ (see Box C). Likewise, in its recently published Corporate Plan, a key objective of the W ellcomeTrust is 'advancing the dis semination of results of Trust-funded research' (see Box D, p. 13). In other words, publications are not in themsel ves the end point, but a basis for providing improved healthcare. This is best illustrated with reference to the 'payback model' shown in Figures 1.1 and 1.2 (p. 12). The creation of knowledge payback, category a),
(Figure 1.1) is a Stage III - primary output (Figure 1.2), that is dependent on a research question or needs assessment (Stage 0), review by peers (Interface a), funding (Stage I), and the actual research (Stage II). H owever, this new knowledge will only improve healthcare if it continues to progress in the linear model ${ }^{b}$ to the final, Stage VI, of the payback model. That is, the new knowledge has to be disseminated (Interface b) and picked up in secondary

Box C - The NHS R\&D Strategy

The establishment of the NHS R\&D Strategy17 in 1991 aimed to provide the basis to ensure that the clinical, policy and managerial decisions within the NHS were based on evidence. A major outcome of this early work was the establishment of the Research and Development Taskforce, chaired by Anthony Culyer, and the subsequent Culyer Report ${ }^{18}$ of 1994, which laid the foundation and principles for NHS R\&D funding to be built.

The Culyer Report defined NHS R\&D as that designed to provide new knowledge needed to improve the performance of the NHS in improving the health of the nation, but which was also generalizable and of value across the service.

A single stream of funding was created for NHS $R \& D$ raised by a levy on health authorities; this brought together existing central and regional budgets ${ }^{14}$. The NHS Executive (NHSE) takes advice on how to invest these funds from the Central Research and Development Committee (CRDC).The levy provides two budgets for research costs:

- Budget 1.This budget is effectively split into two strands. The first covers infrastructure and other indirect costs of research funded by non-commecial external organizations, such as charities. The second, often referred to as own account research, funds work that the NHS initiates and pays in full.
- Budget 2.This is used by the NHSE/Department of Health directly for R\&D to address health and health service needs identified by Ministers and the NHS that the research councils and charities do not meet.
multidisciplinary expert advisory groups. Broad areas have been selected for review on the basis of disease burden, policy relevance, timeliness and the likely benefits of research. This has led to the establishment of a number of time-limited N ational R\&D Programmes (see box below), which commissioned research alongside the long standing Health Technology Assessment (HTA) programme and the various regional initiatives.

More recently a tri-partite framework has been created with the HTA Programme being joined by two further permanent national programmes Service Development and Organization and New and Emerging Applications of Technology.

Through the levy, N HS providers are also able to bid for funds to support R\&D.This has come in two forms: Portfolio Funding and Task-Linked Funding. Both these types of funding enable NHS providers to undertake own account research, particularly the former where the providers have considerable discretion to use the funds as they think best.

In addition to the NHS R\&D funding through the levy, the Department of Health also funds a range of R\&D activity across a number of policy areas, primarily through the Policy Research Programme (PRP), but also through the budgets of Non-Departmental Public Bodies. The PRP funds a number of research centres (e.g. Centre for Health Economics), units (Social Policy Research Unit) and programmes, strategic initiatives and projects (e.g. Environmental Health).

Earlier this year, the NHS announced ${ }^{19}$ some changes to the way $R \& D$ is managed in the service and these are described in Box G in Chapter 4.

A number of priority setting exercises have been undertaken by the CRDC, through the establishment of

- Mental health	• Mother and child health
- Cardiovascular disease and stroke	• Primary dental care
- Physical and complex disabilities	•Asthma management
- Primary and secondary care interface	• Methods of implementing research findings
- Cancer	• Forensic mental health

bThe authors of the payback model acknowledge that the linear process is an over-simplification and in their work they have developed more complex models with feedback loops etc. For the purposes of the current study, and for modelling payback in general, we would argue that a linear model is an adequate representation of the scientific process.

Figure 1.1: Categories of payback
a) Knowledge
b) Benefits to future research and research use:
i. the better targeting of future research;
ii the development of research skills, personnel and overall research capacity;
iii. a critical capability to appropriately utilize existing research, including that from overseas;
iv. staff development/educational benefits.
c) Political and administrative benefits:
i. improved information bases on which to take political and executive decisions;
ii. other political benefits from undertaking research.
d) Health sector benefits:
i. cost reduction in the delivery of existing services;
ii. qualitative improvements in the process of service delivery;
iii. increased effectiveness of services e.g. increased health;
iv. equity, e.g. improved allocation of resources at an area level, better targeting and accessibility;
v. revenues gained from intellectual property rights.
e) Broader economic benefits:
i. wider economic benefits from commercial exploitation of innovations arising from R\&D;
ii. economic benefits from a healthy workforce and reduction in working days lost.

Source: Buxton et al. (1999), Assessing the benefits from North Thames Research and Development.
HERG Research Report No.25. HERG, Brunel University, Middlesex.

Figure 1.2: Outline input-output model for assessing the payback

	Stage 0 - Research needs assessment
	Interface (a) project specification, selection and commissioning
Research sequence	Stage I - Inputs Stage II - Process Stage III - Primary outputs
Research sequence	Interface (b) Dissemination
γ	Stage IV - Secondary outputs Stage V-Applications Stage VI - Impact or final outcomes

Source: Buxton et al. (1999), Assessing the benefits from North Thames Research and Development.
HERG Research Report No.24. HERG, Brunel University, Middlesex.
outputs (Stage IV), such as clinical guidelines, and then applied to every day practice (Stage V). Therefore, in the language of the 'payback' model, publications (peer reviewed or otherwise) are only a primary output; they are a long way removed from achieving biomedical research's unifying mission of improving health and only a part of the knowledge spectrum. The challenge is to develop methodologies that fit the research objectives or payback categories listed in Figure 1.2. In the concluding part of this report we explore this issue further. It is raised now to highlight to the reader the need to use the
data presented in this report in context. That is, it measures one objective - knowledge creation using one methodology - bibliometrics.

Mapping the N HS landscape

The purpose of this research project was to 'map' research outputs for a single performer of research - the N ational H ealth Servicein England - and then to describe the topography of that landscape. The work builds on a previous report M apping the Landscape ${ }^{15}$ - that benchmarked all research outputs in the UK. As with that report,

Box D - The W ellcome Trust's C orporate Plan

The Wellcome Trust is an independent researchfunding charity, established under the will of Sir Henry Wellcome in 1936. It is funded from a private endowment, which is managed with long-term stability and growth in mind.

Its mission is to foster and promote research with the aim of improving human and animal health. Its work covers four areas:

Knowledge base:	improving our understanding of human and animal biology in health and disease, and of the past and present role of medicine in society. - Supporting basic, applied and strategically important research in biomedical science - Researching the societal impact of biomedical science - past, present and future
Resources:	providing exceptional researchers with the infrastructural and career support they need to fulfil their potential. - Human resources: meeting training and career deveopment needs of researchers - Physical resources: building suitable conditions for research
Translation:	ensuring maximum health benefits are gained from biomedical research. - Promoting patient-oriented research and health services research - Advancing the dissemination and exploration of the results ofTrust-funded research
Public engagement:	raising awareness of the medical, ethical and social implications of biomedical science. - Stimulating an informed dialogue to raise awareness and understanding of biomedical science, its achievments, applications and implications

the data presented describe patterns of research papers published in the peer-reviewed serial literature.

The rescarch described in this report was supported by the Research and Development Directorate of the London Regional Office of the National Health Sevvice Executive and the Wellcome Trust. The objectives of the project were:

1. to provide an information source for policy makers;
2. to demonstrate the usefulness of biliometric indicators in $R \& D$ evaluation;
3. to develop a standard set of indicators for future evaluations of research outputs; and
4. to support decision making in funding allocations
By publishing this report we hope to fulfil objectives 1,2 and 3 . All those involved in the project see it as an interactive and iterative process and as such we hope the data presented will stimulate further discussion and research questions.

We have used a classical structure to this report. Chapter 2 describes the bibliometric methodolo-
gies we developed and utilized. It explains how we have created an NHS research outputs datasst and then describes how it can be 'mined' using a number of standard tools. Chapter 3 - the results section - is limited to single and bi-variate analysis of NHS research. Six types of analysis are presented - the number of papers published per year, by region etc.; the level of collaboration between researchers, funders, regions and countries; an analysis of the funding of supporting research in the NHS ; a description of the type of research (i.e whether basic or clinical) in the NH ; analysis by 24 different 'subfieds', or clinical specialities; and estimates of the impact of that research. The fourth chapter brings together these findings, by identifying the policy questions raised from the analysis and developing some initial thoughts for further investigation. Given the large volume of data, wehavemadean effort to focus our analyses (for example we only look at two of the 24 subfields) but we have provided extensive tabulations in the Appendix.

In order to achieve the goals set out in the original project specification, a dataset of NHS research outputs was defined using peer-reviewed literature in England for the years 1990-97. This information was collated from the Research 0 utputs Database (ROD), which contains all biomedical research papers from the United Kingdom covering the timescale of the study. Funding acknowledgements, an address filter and a comprehensive list of N HS postcodes and addresses were combined to create an N HS dataset.

The development of RO D

In the early 1990s, the Wellcome Trust wanted to determine what had been achieved with its support and to investigate the effectiveness of different funding mechanisms. To do this, it needed details of papers published as a result of its support. H owever, the acquisition of the relevant data presented a problem as attempts to obtain lists directly from grantholders proved unreliable and incomplete.

An alternative approach was tried in which a large sample of papers was examined in libraries and their acknowledgements reviewed in order to identify papers supported by the Trust. As a result of a pilot study, a decision was made to design a full-scale ROD that would capture all UK biomedical papers in the peer-reviewed serial literature. Primarily this was intended to assist the Trust in its research management role. Since it also included data of value to other funding bodies it was envisaged that it would be made available to a 'club' of interested organizations, one of which was the N H Sc. The scope of the database was designed to include all the scientific areas of interest to the Trust, including clinical and veterinary medicine, basic cell biology and genetics, and some of the social sciences such as psychology and nursing.

The methodology whereby UK biomedical papers are identified and downloaded from the

Science Citation Index (SCI) and Social Sciences Citation Index (SSCI) is described in detail in the Annex. Briefly, all papers (articles, notes and reviews) with at least one UK address in the biomedical and relevant social science journals that are indexed on the SCI and SSCI are included, as are those with a biomedical keyword in other journals.

Data derived from ROD were published in 1998 in a report benchmarking UK biomedical outputs, Mapping the Landscape: National Biomedical Research 0 utputs, 1988-1995 ${ }^{15}$. It is the intention to use this report as a model for the current study, focusing on all research outputs from NH S institutions in England.

The development of the NHS research outputs dataset

There are several well-defined bibliometric techniques ${ }^{20,21,22,23}$ that can be used to describe research outputs. M apping the Landscape developed some of these techniques, which have been utilized to create an NHS research outputs dataset. Initial steering committee meetings proposed that the dataset should cover the period from 1990 until 1997, with regular updates for new publications to be added at a later date. It was also decided to look only at research carried out by the N H S in England. Therefore, for the purpose of comparison, research outputs in England as a whole were used instead of the UK.

[^0]Two major issues needed to be addressed in using ROD as the primary source of data to define NHS research outputs. First was the vexed question of defining N H S outputs given the complexity of extricating the health services systems from the university system. Second, it had been shown that coverage of health service research journals in UK bibliometric databases is inadequate.

D efining N HS research outputs

In order to create a dataset of NHS research outputs, a way had to be found of defining N H S publications contained in ROD. This was done in three ways. First, an address filter was applied directly to ROD. The address field was searched for the letter strings H O SP, IN FIRM and NHS. Second, ROD was cross-referenced, using postcodes, with a database adapted from the NHS Organization Codes Service (OCS) dataset (see Box E for a description of the OCS data). Finally, any paper which received explicit funding acknowledgements from the N HS was also added to the dataset. Twenty-four NHS codes were used, representing funding by the Department of Health, the NHS Executive
(NHSE) and regional offices of the NHSE (formerly Regional H ealth Authorities ${ }^{\mathrm{d}}$), shown in Table 2.1 (p. 16). These methods provided three sets of overlapping data: papers with an NHS address; papers with an NHS postcode; and papers with an explicit NHS-funding acknowledgement.

The address filter relies on address words that denote a clinical setting, common to the large majority of NHS sites (hospitals, infirmaries, etc.). This filter also acts as an auxiliary to the postcode filter, as the OCS database may not include details of all postcodes within a large hospital trust site. The address filter allows us to pick up NHS sites with secondary or departmental postcodes that are not covered by the OCS. Similarly, the OCS postcodes not only validate records collected by the address filter but they also identify NHS sites regardless of the existence of address keywords. This provides a greater level of recall for records that do not conform to typical address structures either because of their name, links to a parent organization, or editorial formatting in journals. The funding filter takes into account the fact

Box E - O rganization Codes Service ${ }^{38}$

The O rganization Codes Service (OCS) is managed by the Codes Development and Allocation Section of the Department of Health and provides nationally agreed reference data on all organizations in the N HS, and some non-N HS organizations that supply services to the NHS.

The service maintains a dataset of all N HS organizations and allocates a unique code to each. This is used for a number of functions including:

- Reporting - information produced by individual organizations can be uniquely identified and data on resources and finances may be aggregated in useful ways such as by N HS region;
- Patient administration - by allowing identification and verification of the patient's referral source, registered GP and health authority of residence;
- Commissioning and managing service agreements - by identifying both the service provider and commissioner.

The information produced by the OCS includes:

- Authoritative national lists for all NHS organiztions;
- A change history for each of these organizations to allow changes in name, location or mergers to be traced over time;
- Details of geographic areas covered by these organizations, including postcodes.

Using this information, a comprehensive list of postcodes for NHS organizations in England was created and used as one of the means of identifying NHS papers.This data also allowed each paper to be linked to the corresponding N HS region of England.

Table 2.1: NHS funding bodies

Code	Regional Health Authorities or NHSE regional offices
OXR	0 xford Region
EAR	East Anglia Region
XAO	Anglia \& 0 xford NHS Executive
N W T	N orth W est Thames Regional Health Authority
N ET	N orth East Thames Regional Health Authority
XNT	N orth Thames N HS Executive
MYR	Mersey Regional Health Authority
NW R	N orth W estern Regional Health Authority
XNW	N orth W est N HS Executive
NOR	N orthern Regional Health A uthority
YKR	Yorkshire Regional Health Authority
XNY	N orthern \& Yorkshire N HS Executive
SW R	South W estern Regional Health A uthority
W XR	W essex Regional Health Authority
XSW	South and W est N HS Executive
SET	South East Thames Regional Health Authority
SW T	South W est Thames Regional Health Authority
XST	South Thames N HS Executive
TRR	Trent Regional Health Authority
XTR	Trent N HS Executive
W MR	W est Midlands Regional Health Authority
XWM	W est Midlands N HS Executive
XNH	N HSE generic code
DOH	DOH generic code

Fig 2.1: Schematic representation illustrating the construction of the NHS dataset

practice the health service system is embedded in the university system, and vice versa. Specifically, during steering committee sessions, fears were raised that papers from academic sites would not be captured and their output under-represented within the NHS. This arises from the perception that clinicians in academic institutions may use their university addresses on papers. Other than stressing editorial accuracy and consistency in the way NHS research is attributed there is little that can be

[^1]Table 2.2: Postcode coverage of three groups of NHS sites

Trust type	No. of postcodes	No. in RO D	No. in N HS dataset	D ataset coverage of postcodes
University Hospital Trust A	21	20	20	95%
University Hospital Trust B	27	20	20	74%
Community Health Services Trust	56	16	16	29%

Table 2.3: List of additional HSR journals included in ROD

Journal title	Added to ROD	Number of papers ${ }^{\text {a }}$
Audit Trends	\bullet	122
British Journal of Health Care M anagement	\bullet	319
Health Director	\bigcirc	N ot peer reviewed
Health Services Journal	\bigcirc	N ot peer reviewed
Health Services M anagement Research	\bullet	59
Journal of Evaluation in Clinical Practice	-	56
Journal of Health Services Research and Policy	-	44
Journal of M anagement in M edicine	-	38
Journal of M ental Health Policy and Economics	\bigcirc	Began in 1998
N urse Researcher	-	81
Nursing Standard	\bullet	973
Quality Connection	\bigcirc	N ot peer reviewed
Quality of Life in Childhood Asthma	\bigcirc	N ot found
a that is articles, notes or review with a UK address. $\begin{aligned} & \bullet=\mathrm{Yes} \\ & \mathrm{O}=\mathrm{No} \end{aligned}$		

done to assure complete recall without compromising the precision of records within the dataset. To this end several sensitivity analyses were undertaken to see just what was being captured or missed by the filters used to create the dataset. This analysis concluded that, in London the vast majority (i.e. 20 out of 24 83%) of 'medical academic sites' of the University of London (i.e. not directly funded by the NHS) were included in the NHS research outputs dataset.

A further analysis assessed the recall and precision of the techniques used to define N H S research outputs. The postcodes from two acute
hospital trusts and one community health services trust (all designated University H ospitals but where the latter contained a number of small clinics) were compared with ROD and the NHS datasets. The three groups of postcodes and their coverage on the datasets are detailed in Table 2.2. Whilst there was very good coverage of postcodes for the University Hospital Trusts, for the Community Health Services Trust there was much lower coverage by ROD. This raises the question of whether these sites are research-active in the sense that they produce research papers in peer-reviewed journals (and would therefore be included in the
$\mathrm{SCI} / \mathrm{SSCI}$ and ROD) or whether there is a tendency systematically to under-represent community-based research.

D efining health services research
In a recent paper ${ }^{24}$ Black and D avies pointed out that UK bibliographic databases, including ROD, underestimated the output of health services researchers. This is in part due to the lack of coverage of health services research (HSR) journals in ROD and other databases. Black and D avies argue that, although the 'poor cousin' of basic and clinical research, HSR is becoming a rival in terms of funding, scientific quality and political importance. Any database that concentrates on clinical and basic research journals is therefore missing out on a third 'vital requirement' of healthcare research. H owever, the wide range of journals in which HSR is published makes it difficult to monitor both the quantity and quality of HSR research.

In response to this analysis, an attempt was made to increase ROD's coverage of HSR journals 5^{25}. O ut of 264 H SR journals identified by respondents to Black and Davies' request for lists of original research articles, only 138 were in ROD (41\%). H owever, of the remaining 126 journals not in ROD, 13 contained 50% of the missing papers identified by the survey respondents. These 13 journals are listed in Table 2.3 (p. 17). Five of the journals were excluded from ROD for various reasons. One journal could not be located in any library. Another journal began in 1998, which is outside the remit of this project but will be included in future updates of the dataset. Three of the journals were not peer reviewed and so were not added to ROD. These five journals alone accounted for 30% of the missing papers.The remaining 20% of papers, in the other eight journals, were collected from libraries and inputted into ROD if they were articles, notes, or reviews with UK addresses. According to standard procedures for ROD records, any funding information was also noted. Eventually, 1692 papers were collected, less than 1% of the current total on ROD.

Counting publications

W hen assessing the number of publications by different units (e.g. NHS region, funding body etc.), two different methods can be used. In some studies a unit's contribution is recorded as a fraction (for example, a publication bearing addresses from say, London and North West regions would score 0.5 each) but in other studies - including this one - integer counting is used, whereby each region scores 1.0. The difference in the two methods is that if counts of publications are fractionated, then individual unit percentages sum to 100% and the subsequent proportions attributable are lower than with integer counting.

Identifying funding sources

All the papers in the dataset were looked up in libraries to determine their funding sources. For extramural funding this was taken from the formal acknowledgement section, following detailed guidelines (see Annex). Intramural funding determined from addresses was also included in this analysis: this is particularly important for Government and Research Council labs, industrial companies and charity-funded labs. The funding bodies were individually identified from a thesaurus and additionally classified into three main funding sectors: Government; private-non-profit (PN P); and industry.

We defined Government funding as the research councils (e.g. the M edical Research Council), Government departments (e.g. the Department of H ealth), and local or regional authorities (e.g. the Scottish Executive). The PN P funding included collecting charities (e.g. Cancer Research Campaign), endowed or single source charities/foundations (e.g. the Wellcome Trust), hospital trustees (i.e. funds association with a particular hospital such as St. James' University Hospital Special Trustees), other not-for-profit organizations like MERLIN (Medical Emergency Relief International), and other mixed sources of academic funds (e.g. CT Taylor Studentship

Fund in Cambridge). In addition to assessing the PNP sector as a whole, we also looked at Wellcome Trust outputs arising from within an N H S setting.

The industry sector was defined as pharmaceutical (e.g. SmithKline Beecham) and non-pharmaceutical (e.g. Channel Four Television) companies and their subsidiaries, as well as biotechnology companies (e.g. O xford Biomedica). We did not analyse veterinary practices and those 1.2% of unclassified funding acknowledgements.

O ver onethird of papers (greater for those arising from the NHS) do not have funding acknowledgements and the implications of this are discussed later. T hat said, it should be noted that the number of papers without acknowledgements is declining ${ }^{15}$, and it has been shown that seven out of eight papers actually acknowledge extramural support that should do so^{26}. It should be stressed that the lack of a funding acknowledgement does not imply that the research is unfunded - the main sources of funding for this research will be the NHS and to a lesser degree the Higher Education Funding Councils.

Subfield definition

The research outputs identified for the N H S can be characterized by biomedical subfield. Such analysis is important, as it has been shown
that different fields of research have different publication patterns ${ }^{20}$.

The process used in defining subfields is given in the Annex. Table 2.4 shows the available subfields. Five of these subfields have been specifically developed for this project. In total, 25 subfields were to be applied, however, the filter for health services research proved exceptionally difficult to define and is as yet unfinished (and thus excluded from this report). This was unfortunate given the recent importance attributed to H SR and it is intended that the filter will be finally defined and added to future updates of the N H S dataset.

Of the current list, 11 subfields were used either because N ational Service Frameworks in the area are published or because specific N H S advisory groups ('Topic Working Groups') to the Central Research and Development Committee (CRDC) recently reviewed research needs in that field ${ }^{27}$. A further 14 were chosen by the steering committee. Stroke, mental health, asthma, rehabilitation and public health were all developed specifically for this study at the request of the steering committee. In this report we concentrate on two contrasting subfields (oncology and mental health) to illustrate the utility of subfield specific bibliometric analysis. However, in the Appendix we provide the complete data for all 24 subfields.

Table 2.4: List of $\mathbf{2 4}$ biomedical subfields used in study

Anaesthetics	Gerontology	O ncology
Arthritis and rheumatism	H aematology	Paediatrics
Asthma	Intensive care	Primary healthcare
Cardiology	Mental health	Public health
Clinical trials	N eonatology	Rehabilitation
Diabetes	N eurosciences	Respiratory medicine
Gastroenterology	N ursing research	Stroke
Genetics	O bstetrics and gynaecology	Surgery

C lassifying research

A further tool used was a journal classification system developed and updated by CHI Research Inc., which is based on expert opinion and journal-to-journal citations, and has become a standard tool in bibliometric analyses ${ }^{21}$. Journals are allocated into four hierarchical levels in which each level is more likely to cite papers in journals at the same level or the level below it and vice versa (Table 2.5). Hence, only 4% of papers in level 1 'clinical observation' journals (e.g. BMJ) will cite papers in level 4 'basic' journals (e.g. Nature), compared to 8% for level 2 'clinical mix' journals (e.g. New England Journal of M edicine), and 21% for level 3 'clinical investigation' journals (e.g. Immunology). By looking at the journals in which papers are published, it is possible to characterize the research on a clinical to basic continuum. It should be noted that this analysis is rather crude as it allocates all papers within a journal to one level, despite a strong likelihood that there is variation in the type of research published in a given journal.

Measuring impact

As noted in the introduction, there are a number of ways in which research impacts on healthcare. O ne way is the transfer of knowledge from one user to another via publication in peer-reviewed journals. A proxy for the number of times a paper is read would be the number of times it is cited by other researchers. Hence citation analysis provides a useful tool for
measuring the impact of research. In this study we use five-year journal impact factors; that is a measure of expected number of citations a paper would receive if it was published in a given journal over a five-year period. For example, the five-year journal impact factor of the BMJ is 16 - this means that a paper published in the BMJ in 1994 might be expected to receive 16 citations between 1994 and 1998.

The major drawback of journal impact factors is that they range from 0 to over 200. However, it has been shown that scientific administrators and medical researchers differentiate the impact of publications by a factor of only about four ${ }^{22,23}$. Therefore in this study, each journal has been assigned a weight (W) indicating the potential impact of a paper from a journal, with $\mathrm{W}=4$ being high potential impact (the top 10% of journals) and $\mathrm{W}=1$ being low potential impact (the bottom 40\% of journals) ${ }^{15}$.

This is probably best illustrated with reference to Figure 2.2. In this schematic diagram, the y-axis is the five-year journal impact factor, and the x-axis is the number of journals (sorted in descending order of their journal impact factor). In this example, we are representing oncology research for papers published in England between 1990-97. The top 10% of journals all have a five-year impact factor greater than 29.2 (and include, for example, N ature and C ancer Research). These journals are allocated a weighting value of 4. The second group of journals - which

Table 2.5: Definition of research levels

Research level	Type	Example
1	Clinical observation	BM J
2	Clinical mix	New England Journal of M edicine
3	Clinical investigation	Immunology
4	Basic research	Nature
N/A	Yet to be classified/difficult to classify	-

Source: N arin et al. (1976) 'Structure of the Biomedical Literature', Journal of the American Society for Information Science, Jan-Feb, 25-45.
account for 20\% of the journals that publish oncology papers - have five-year journal impact factors between 13.2 and 29.1. These journals are given a W -value of 3 . This process is repeated for the next 30% of W 2 journals whose impact factors lie between 6.9 and 13.1, and the final 40% of W 1 journals which all have a five-year impact factor less than 6.9.

As different areas of research use different journals, the citation boundaries for each of the W-values is calculated for each subfied, on the basis of the journals used by that subfield. This in effect means that all the W-values are subfield
specific, thus controlling for different publication patterns between different disciplines.

Summary

In this chapter we have discussed the tools that we use to describe scientific publication patterns in the NHS. In the next chapter we begin to map N H S research outputs by looking at the quantity of publications, the level of collaboration, sources of funding, the type of research (using research levels) and the impact of research for two subfields, oncology and mental health.

Fig 2.2: Schematic representation illustrating how W-values were calculated for each subfield

Results - An analysis of scientific publications in the NHS

In one sense, the challenge set by this project was developing a systematic methodology for capturing all N H S research outputs. The dataset we have defined includes all research papers that are (a) on the Wellcome Trust's Research Outputs D atabase (ROD) and (b) either acknowledge the NHS for funding support and/or describe research that occurred on N HS premises and thus is supported by the health service. Therefore, the only plausible weakness to our methodology is if (a) ROD has inadequate coverage for NHS research (and this is the reason why we added H ealth Services Research) and (b) if authors with joint (or honorary) positions between the N H S and a university/medical school are inappropriately excluding their NHS affiliation on research papers by not declaring NHS R\&D support. It is worth pointing out that H SR papers only accounted for 1% of research outputs, and secondly the sensitivity analysis performed suggested that 83% of University of London medical academic sites are included in the dataset.

In this chapter we describe the N H S research landscape by assessing: the number of papers published a year by region etc.; the level of collaboration between researchers, funders, regions, countries; an analysis of the funding of supporting research in the NHS ; a description of the level of research (i.e. whether basic or clinical) in the NH ; and an analysis of two contrasting subfields (oncology and mental health), including estimates of the impact of the research. (We also provide all the data for all 24 subfields in the Appendix). Throughout the chapter we compare the research outputs for the NHS (1990-97) with those of England (1990-97) f. In the analyses of the subfields we focus on outputs in the London region (1990-97) and those acknowledging the Wellcome Trust as a funder; these are compared with both the NHS and England ${ }^{9}$. It should be noted that these sets are not mutually exclusive the NHS dataset is a subset of the English one, and the London region and the WellcomeTrust a subset of the NHS (papers acknowledging the

Wellcome Trust as a funder are referred to as Wellcome Trust/NHS or WT/NHS from here on). Hence, any differences between the sets would be even more exaggerated if they were, or could be, separated.

Producing research - the number of

 publicationsOn average, the NHS in England supports over 13500 research publications a year. Figure 3.1 shows the number of papers published per year in the UK, England, the NHS, and the Wellcome Trust/NHS. In 1997, the NHS accounted for 55\% of English outputs, although this had declined from 58\% in 1990. The average annual percentage growth of NHS outputs was 2.96%, compared to 3.87% in England ${ }^{\text {h }}$, and 9.67% for WellcomeTrust/N H S outputs.

Using the data provided by the OCS (see Box E, p. 15), NHS regional codes were allocated to every NHS postcode and NHS address in the dataset. This enabled us to map the output of research publications by region, as shown in Figure 3.2.

Fig 3.1: Number of research publications in the UK, England, the NHS and the Wellcome Trust/NHS

[^2]Fig 3.2: Map of England, showing output of NHS papers by region (1990-97)

As can be seen in this map, the London region accounts for a half of all research outputs. The next largest region, in terms of output, is the South East (14\%), followed by the North West (13\%), Trent (12\%), Northern and Yorkshire (9\%), West Midlands (8\%), South West (7\%) and Eastern (6\%). The regional distribution of Wellcome Trust-acknowledged papers in the NHS follows a similar distribution with the London region at 44%, followed by the South East (19\%), North West (10\%), Trent (8\%), Eastern (7\%), West M idlands (4\%), South West (4\%) and N orthern and Yorkshire (4\%).

W orking in partnership

Collaboration or partnership is widely seen as a 'good thing'. It has been a central theme of science policy for the last ten years. In fact, there
is evidence to support this policy - scientific research papers with more authors, addresses and funding bodies are, other things being equal, more likely to be published in high-impact journals than single-author, single-funded publications ${ }^{20}$.

There are a number of different types of partnerships - there are those collaborations between researchers (which themselves could be interdisciplinary, interinstitutional, or international) and those collaborations between funders (whether formally via schemes such as the Joint Infrastructure Fund ${ }^{29}$, the N HS and qualifying partners for Support for Science NHS future funding ${ }^{\text {i }}$, or informally though multiple acknowledgements on papers). The level of collaboration through some of these types of partnership is assessed below.

Fig 3.3: Average number of authors and addresses for English, NHS, and Wellcome Trust/NHS papers (1990-97)

Fig 3.4: International co-authorship on English, NHS, and Wellcome Trust/NHS papers (1990-97)

Country of co-authorship with NHS

Fig 3.5: Map of England, showing collaboration between the London region and other NHS regions

The average number of authors and addresses per paper is shown in Figure 3.3. These data, which proxy research collaborations between researchers and institutions, indicate an increased tendency to collaborate between 1990 and 1997. Figure 3.3 demonstrates that, on average, N H S papers have more authors and more addresses than other papers in England, whilst Wellcome Trust/NHS outputs have a greater number of authors and addresses than either the NHS as a whole or England.

International addresses can also be used as an indicator of collaboration. Those countries co-authoring with NHS papers are shown in Figure 3.4. Around 6% of NHS papers have been co-authored with colleagues from the USA. Papers co-authored with colleagues from the USA, Scotland, Germany and France account for the majority of international papers. The level of international collaboration in the NHS is less than it is for England as a whole.

Collaboration on papers between the London region and the remaining seven regions was also examined. Figure 3.5 displays the proportion of papers in each region that have a London address (top percentage). The percentage below is the proportion of London papers that are collaborative with theother regions. In other words, 14.1\% of South East papers are jointly published with a London region address, whilst 4.1\% of London papers have a South East address. The interesting thing to note from this map is how London is co-authoring more interregional research with the other regions, and that this is greater in the geographical surrounding regions than those further afield.

Another form of collaboration is between funding partners. A paper may acknowledge a number of funding sources as researchers - or groups of researchers - may have won a number of competitive grants from a number of different sources. Figure 3.6 (p. 26) shows the number of papers with a given number of explicit funding acknowledgements. There are two points to note from this figure. First, the proportion of 'unacknowledged' papers is considerably greater (i.e. by more than 10 percentage
points) for the N H S than for England. This does not imply that these papers are 'unfunded', but suggests that either the authors are not acknowledging direct funding support, or the support is via 'soft' money, i.e. funding which is not awarded through a competitive grant application. As previous research has shown that seven out of eight papers correctly acknowledge funding support ${ }^{26}$, then it would seem appropriate to assume that the majority of the 'unacknowledged' papers are indeed those arising from 'soft' research funds. W ithin the NHS such research is often known as 'own account' research. That is, research conceived by clinical staff, often preprotocol, which is funded through the NHS R\&D Levy but not specifically applied for outside the host institution through a competitive peer-review process (see Box C, p. 11). Wellcome Trust papers are identified in this analysis by funding body acknowledgement; the number of papers that did not acknowledge Trust support when in receipt of funding is not known.

The second point to note related to Figure 3.6 is that it has been shown in other studies that multiple funding is associated with high-impact journals ${ }^{20}$. That is, the 28% of papers that have two or more funding body acknowledgements are more likely to be published in journals such as Nature or Science, than those papers with no or only one acknowledgement. This empirical observation has a sound basis - the more times a project goes through a competitive peer-reviewed process the greater its quality is likely to be. From a research policy perspective, this would suggest that 'own account' research is of lower impact; this is a hypothesis that is explored in detail below and in the following chapter.

Funding support

By assessing the pattern of funding body acknowledgements stated at the end of a paper, we can 'link' research inputs (i.e. funding or

Fig 3.6: Number of English, NHS, and Wellcome Trust/NHS papers (1990-97) with a given number of acknowledged funding bodies

Fig 3.7: Proportion of papers acknowledging funding from a sector - English and NHS papers (1990-97)

Funding sector

[^3]Table 3.1: Number of NHS papers acknowledging main sectors and subsectors

Year	1990	1991	1992	1993	1994	1995	1996	1997	Total	AAPG
Gov	3490	3641	3805	4014	4059	4287	4216	4173	31685	2.84%
PN P	3442	3722	4031	4483	4792	4842	4913	4509	34734	4.75%
W T	678	744	828	881	1013	1162	1198	1238	7742	9.67%
Industry	1417	1508	1514	1766	1821	1920	1957	1938	13841	5.18%
N one	6091	6029	6265	6030	6398	6692	7002	7129	51636	2.54%
Public	9581	9670	10070	10044	10457	10979	11218	11302	83321	2.65%
All N HS	12219	12471	12988	13377	13976	14447	14814	14558	108850	2.96%

AAPG = Average Annual Percentage Growth

Stage I in the payback model; Figure 1.2, p. 12) with outputs (i.e. publication or Stage III in the payback model). In the analysis presented here we focus on three main sectors: G overnment; private-not-for-profit (PNP) including the WellcomeTrust; and industry, although all these sectors are al so supported by the N H S. We also assume that those papers without acknowledgements are 'own account' research and therefore funded from the public purse. Hence we combine the Government sector with unacknowledged papers to create a category for all publicly funded research outputs.

Table 3.1 illustrates the number of papers in the three main funding sectors, and selected subgroups. Between 1990 and 1997, the UK Government contributed to 29% (i.e. 31 685/108 850) of all NHS biomedical research funding, the private-non-profit sector 32% (i.e. $34734 / 108850$) and the industrial sector 13% (i.e. $13841 / 108$ 850). The combined public sector accounted for 76% (i.e. $83321 / 108850$) of all outputs. D uring the period 1990-97, Government funding, as a proportion of all funding, declined, whilst the private-non-profit sector and industry increased their relative share of research outputs. The rise of the PN P sector is largely due to the increased funding of the Wellcome Trust and its subsequent doubling of NHS research output
over the period of analysis. The increased support for research sponsored by industry is noteworthy, no doubt reflecting the 5% annual increase in extramural $R \& D$ expenditure of the pharmaceutical industry over the same periodk.

A comparison between the patterns of funding acknowledgements in the NHS and for England as a whole is shown in Figure 3.7. The figures add up to more than 100% because it is possible for more than one sector to fund each paper. Explicitly acknowledged support from the Government sector, private-non-profit and industry is lower in the NHS than for England, whilst the reverse is true for the unacknowledged papers. Thecombined 'public' group is nearly identical for both the NHS and England and accounts for threequarters of all publications.

Research levels

Research policy makers often debate the balance between basic and clinical research. On one hand, the serendipitous nature of science and the need to understand fundamental biological processes makes a compelling case for supporting basic research. On the other hand, and as noted in the introduction, the objective of biomedical research is ultimately to improve health, and thus most biomedical research strategies include support for applied or clinical - research. In practice, most research

[^4]funders have a portfolio of programmes that cover both basic and applied research. O ne way to describe a research portfolio is to consider the research published in a given journal and then categorize that journal by the predominance of papers in it. Thus if most of the papers in a journal are found to be of a clinical nature that journal would be categorized as clinical. As explained in Chapter 2 (p.20), CHI Research Inc. has developed a method for classifying papers by their journal type into four research levels: clinical observation ($R L=1$); clinical mix ($R L=2$); clinical investigation ($R L=3$); and basic ($R L=4$). Figure 3.8 compares the research levels of NHS papers and the Wellcome Trust/N H S to that for England. Unsurprisingly, the NHS produces proportionately more clinical observation ($\mathrm{RL}=1$) papers than England as a whole (i.e. 26% for the NHS versus 17% for England and 8\% for the Wellcome Trust/N H S). Conversely, the N H S produces less basic research (16\%) than either England (29\%) or the Wellcome Trust/N H S (40\%). Perhaps the most interesting point arising from the analysis of research levels is how they have changed in the eight-year period of analysis (Table 3.2). O ver this period, research in the NHS has increased by around 3%, in terms of output, annually. Basic research in the NHS increased by 5%, which is in part due to the increase in the

Wellcome Trust/NHS outputs which increased year on year by 13%. NHS clinical research is relatively stable over this period, growing at a rate less than that for all NHS publications. At all research levels the Wellcome Trust/NHS outputs had increased at a faster rate annually than N H S outputs.

Subfields

Table 3.3 shows the number of papers in the 24 selected subfields, their annual average percentage growth, and their proportion of all NHS outputs. There are, of course, overlaps between subfields. For example, paediatrics will 'share' some papers with oncology. The largest subfield in Table 3.3 is surgery (14%) followed by oncology (12\%) and cardiology (12\%). The smallest subfield is stroke (1\%), followed by asthma (1%) and intensive care (2%). The fastest growing subfields are nursing research, stroke and genetics. Analysis of research level in the different subfields reveals that those with the highest percentage of basic research are genetics (33\%), neuroscience (26%) and diabetes (15%), whilst mental health (52%), stroke (52%) and intensive care (51%) are the most clinical subfields.

The impact of research

As explained in the previous chapter (p. 20), to estimate the potential influence of a paper,

Table 3.2: Distribution of research levels of NHS and WellcomeTrust/NHS papers, 1990-97

Year		1990	1991	1992	1993	1994	1995	1996	1997	Total	AAPG
Clin. obs.	N HS	3307	3425	3430	3576	3735	3570	378	3613	28442	1.54%
(RL = 1)	W T/N HS	52	52	56	67	93	91	95	84	590	10.20%
Clin. mix	N HS	4217	4099	4385	4305	4511	4665	4360	4474	35016	1.15%
(RL = 2)	W T/N HS	166	189	197	210	212	251	252	245	1722	6.00%
Clin. inv.	N HS	2531	2672	2831	2865	2956	2964	3102	2990	22911	2.51%
(RL=3)	W T/N HS	232	216	251	269	316	309	346	338	2277	7.11%
Basic	N HS	1813	1884	1901	2070	2124	2376	2588	2453	17209	5.38%
(RL = 4)	W T/N HS	224	284	320	331	383	495	486	542	3065	13.08%
N ot	N HS	351	391	441	561	650	872	978	1028	5272	18.55%
classified	W T/N HS	4	3	4	4	9	16	19	29	88	39.67%
Total	N HS	12219	12471	12988	13377	13976	14447	14814	14558	108850	2.96%
	W T/N HS	678	744	828	881	1013	1162	1198	1238	7742	9.67%

[^5]Fig 3.8: Research level of English, NHS, and Wellcome Trust/NHS papers (1990-97)

five-year journal impact factors are mapped onto a four-point scale of weights (or W-values), with $\mathrm{W}=4$ being high-impact papers (i.e. within the top-rated 10% of journals) and $\mathrm{W}=1$ being low impact (i.e. the bottom 40% of journals). This method means that the impact of a paper is partly determined by the subfield within which it falls. For example, and as illustrated in Table 3.4 (p. 30), for a paper to be classified asW $=4$ in oncology, its journal impact factor would need to exceed 29 citations over a five-year period. In mental health research, on the other hand, a $\mathrm{W}=4$ journal would only need a five-year impact factor of 15 citations. It should be noted that the values presented in Table 3.4 arefor all English papers and therefore are used to act as benchmark to compare outputs, by subfield, for the N H S and its regions.

Below, we focus on two contrasting subfields - oncology and mental health. We look at outputs for England, the NHS, the Wellcome Trust/N H S and the London region, and profile the growth of outputs, collaboration, funding, and type and impact of research. The information presented for these two subfields is included for all 24 subfields in the Appendix, but without commentary.

Table 3.3: Proportion of biomedical papers in 24 selected subfields, 1990-97

| Subfield name
 outputs | N | | \% of N HS |
| :--- | ---: | ---: | ---: | AAPG

AAPG = Average Annual Percentage Growth

Table 3.4: Distribution of five-year impact factors for English outputs, determining impact categories, W, for 24 subfields

Subfield	W 2	W 3	W 4
Anaesthetics	5.27	9.58	15.45
Arthritis and rheumatism	7.19	12.26	22.71
Asthma	8.34	14.14	21.28
Cardiology	7.19	11.71	21.65
Clinical trials	7.62	11.82	19.94
Diabetes	7.70	13.82	28.79
Gastroenterology	6.65	11.49	19.25
Genetics	10.94	17.89	40.26
Gerontology	6.96	11.21	16.56
Haematology	7.83	14.63	30.91
Intensive care	4.52	9.53	14.58
Mental health	6.66	10.57	15.67
N eonatology	6.34	11.26	16.77
N eurosciences	7.72	12.64	22.23
N ursing research	4.08	7.41	13.77
Obstetrics and	6.83	10.86	15.63
gynaecology	6.87	13.18	29.19
O ncology	6.87	5.69	11.15
Paediatrics	23.01		
Primary healthcare	6.35	11.06	19.56
Public health	6.48	8.87	16.47
Rehabilitation	4.42	9.58	16.82
Respiratory	7.02	11.59	16.43
medicine	5.53	10.31	15.97
Stroke	9.12	15.16	
Surgery			
	4.69	10	

0 ncology research

Table 3.5 profiles oncology research in England, the NHS, the Wellcome Trust/N HS and the London region of the NHS. A number of observations can be made from this profile. First, oncology research is a well-established subfield. It accounts for 12\% (Table 3.3, p. 29) of all N H S publications. Between 1990 and 1997, 18 805 papers were published in England, 72\%
(i.e. 13 500/18 805) of these were from theN H S. This is considerably higher than the expected 56% (Figure 3.1, p. 22) for all N H S publications in England. The London region produced 6584 papers over the eight-year period, making up 49\% (i.e. $6854 / 13500$) of all NHS oncology papers, although it is growing at a slower rate (2.4\%) than for all NHS papers (3.3\%). Only 2% (287/18 805) of NHS oncology papers acknowledge the Wellcome Trust. This is not surprising given that the Trust will consider proposals for funding cancer research only where the research could have broader rel evance to the understanding of biological processes or of other diseases'.

The second observation is that collaboration - as proxied by the number of authors on a paper - is positively associated with impact. This is a recurrent theme in bibliometric analyses and supports the notion that funding large, possibly multinational and multidisciplinary research teams is more effective in producing high-impact research than funding lone scientists. This, however, does not mean that such research is (cost) efficient; large-scale collaborations are more expensive than single scientist-led projects. The challenge for analysts is to develop methodologies that can begin to differentiate between the effectiveness (i.e. impact) of research and its efficiency.

The W-values were based on the distribution of five-year journal impact factors for all English oncology papers. The reason that 11.9% (i.e. 2244/18 805) of English oncology papers are classified as being of high impact (i.e., $W=4$) is because the Journal of Biological Chemistry spanned the 10th percentile and the citation boundary was lowered to include all papers published in this journal. The 11.9\% figure, however, acts as a benchmark for both the NHS ($8.8 \%=1190 / 13500$), London ($10.3 \%=$ 677/6584) and the WellcomeTrust/N H S (18.5\% $=53 / 287$). In other words, in comparison to all English oncology outputs, the NHS and the

Table 3.5: Profile of oncology research

London region of the NHS produce fewer highimpact publications, where as those funded by the WellcomeTrust are of greater impact. This observation, however, needs to be treated with caution, as impact is confounded by the research level of a journal of publication. Other things being equal, basic research is of greater impact than clinical research. This is not to say that basic research is 'better' than clinical research, but it does emphasize two points. First, citation analysis may be an inappropriate tool for measuring clinical research (and this is discussed in chapter 4) and, second, if bibliometric techniques are used, it is essential that the research level of a journal is controlled for in any analysis.

Accordingly, Table 3.5 (p. 31) presents cross tabulations of impact (W-values) by research level, for the four units of analysis- England, the NHS, the Wellcome Trust and the London region of the NHS. Thefirst point to note is that the correlation between impact and research level is shown clearly in these data. In England, a third of 1\% (i.e. 8/3000) of high-impact (W 4) papers are clinical observation ($R L=1$), compared to 32% (i.e. 894/2760) of high-impact basic (RL=4) papers. The proportion of high-impact (W4) papers by the four research levels, for England, the NHS, London and the Wellcome Trust/ NHS , is plotted in Figure 3.9. Thedifferences between the four sets of data are marginal, although the London region has a higher proportion of high-impact journals across all four research levels than for the NHS as a whole.

A second confounding factor in assessing impact is funding. It has been shown that there is a correlation between the number of funding body acknowledgements on a paper and the impact of that paper ${ }^{20}$. M ost importantly, in the current context, papers without a funding acknowledgement are of lower impact than those with one. This observation is validated in Table 3.5. For English papers, over half of the unacknowledged papers (i.e. $54.8 \%=3598 / 6750$) are low impact (W 1) compared to 2.6% (i.e. 169/6570) for highimpact (W4) publications. The proportion of unacknowledged low-impact papers for the N H S (55.3\% $=3147 / 5693$) and London is similar
(51.8\% = 1360/2625) to England as a whole (54.8\%).

For those papers with one or more acknowledgements, the PN P sector dominates oncology funding. Perhaps not unsurprisingly, given the cancer research charities in the UK, around a half $(6460 / 13500=48 \%)$ of all NHS oncology papers acknowledge the PNP sector. For the high-impact (W4) papers, PNP is acknowledged on around 80% (i.e. 949/1190) of NHS papers, compared to 43% (i.e. 509/1190) for Government, and 15% (i.e. 184/1190) for industry. This pattern is similar for all English papers and for the London region.

Mental health research

In contrast to oncology, mental health research is a small but fast-growing subfield. It accounts for around 5\% of publications in England, theN HS, London and the Wellcome Trust/ NHS , but is growing at around 7\% ayear in England and 11\% for the WellcomeTrust. This would mean that the number of mental health research publications would double in a decade. Yet, despitethe low base and high growth rate, the associations described for oncology are further validated in Table 3.6.

Fig 3.9: Research level of high-impact (W4) oncology papers for England, the NHS, London, and the Wellcome Trust/NHS (1990-97)

Table 3.6: Profile of mental health research

| | | | | | | | |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |$|$

For example, high-impact papers are associated with more authors, basic research and explicitly acknowledged funding.

In contrast to oncology, mental health research is far more clinical. For example, 52% (i.e. 2758/5311; Table 3.6, p. 33) of N H S mental health papers are published in clinical observation (i.e. RL=1) journals compared to 20% (i.e. 2721/13500; Table 3.5, p. 31) of oncology papers. Within the NHS clinical observation ($\mathrm{RL}=1$) group there are proportionately more high-impact mental health papers (i.e. $3.5 \%=$ $98 / 2758$ for mental health research versus $0.2 \%=5 / 2721$ for oncology research; a statistically significant difference at $\mathrm{p}<0.05)$. C onversely, there is less high-impact basic $(R L=4)$ research in the NHS in mental health than in oncology (i.e. $20.3 \%=36 / 311$ for mental health research versus $26.9 \%=290 / 1077$ for oncology research; a statistically significant difference at $\mathrm{p}<0.05$).

Another contrast with oncology is the funding profile. For the high-impact (W 4) papers, Figure 3.10 illustrates the funding body acknowledgements for oncology and mental
health research. As noted previously, oncology research is exceptional in its support from the cancer research charities. That apart, support from Government and industry is similar between the two subfields.

Summary

In this chapter we have illustrated the information that can be derived from a research outputs dataset. We have demonstrated how it is possible to analyse scientific publications using a number of different techniques. Most importantly, we have demonstrated the complexity of the data and how one needs to control for various confounding variables. In doing so, we hope we have demonstrated the use of bibliometric analysis as a source of information for supporting R\&D management.

In the next chapter, we assess the potential limitations of our analysis and discuss some of the main $R \& D$ policy issues arising from the study. We also highlight some of the research questions arising from this work and explain how the project will be developed.

Fig 3.10: Proportion of high-impact (W4) NHS papers, by funding source for mental health and oncology research

Research in the NHS is big business. O ver half of all biomedical research papers published in England are supported, one way or another, by the N ational Health Service. Between 1990 and 1997, the NHS would have invested around $£ 2.5$ billion in research and development ${ }^{\text {n }}$. Somewhere between two-thirds and four-fifths of this investment has been used as the 'third leg' in a 'triple support system' to fund the indirect costs of externally sponsored non-commercial research ${ }^{n}$. The size of this inward investment is hard to estimate, but could be in the region of $£ 150 \mathrm{~m}$ per year . This would make the combined (non-commercial) expenditure on R\&D in the NHS in excess of $£ 400 \mathrm{~m}$ per year over the period of analysis; an expenditure equivalent to the R\&D budgets of major household names such as Zeneca ($£ 653 \mathrm{~m}$), Shell ($£ 403 \mathrm{~m}$) and British Aerospace ($£ 301 \mathrm{~m}$). ${ }^{24}$

For these commercial organizations the return on $R \& D$ investment is measured in increased sales, profit and ultimately in share price. For non-commercial organizations such as the NHS , research councils, and medical research charities, the task of measuring payback is much harder as there is no agreed metric such as monetary value ${ }^{p}$. The payback model (Figures 1.1 and 1.2, p. 12) provides a framework whereby it is possible to disaggregate the research process and begin to measure different payback categories and different stages in research and development. In this study, we have comprehensively measured the return on knowledge creation. Thequestion is whether new knowledge (as recorded in the peerreviewed literature) has any impact on 'health gain', and if so by how much?

In this chapter we expand on this research question, by examining whether bibliometrics is an appropriate tool to assess clinical research. We then draw out three major policy issues that, we believe, arise from this study. In conclusion we describe how this project will be managed and developed over the coming years.

Using bibliometrics to assess clinical research

At the outset of this study, we were aware of the view that bibliometrics is an inappropriate tool to assess clinical research. This, in part, reflected general concerns about bibliometric analysis but also was a special plea for clinical research. As we emphasized in the introduction, we unreservedly accept that bibliometrics has

[^6]limitations and that it is one part of a research evaluator's toolkit (see Box B, p. 10). Thus, the data we have presented in this report should not be used in isolation from other supporting evidence. That said, we hold the strong conviction that bibliometric analysis provides a useful, quantifiable, evidence base for R\&D strategists and managers in the NHS and elsewhere.

We also have some sympathy with the argument that clinical research is a 'special case' inasmuch as the objective of clinical research is to improve healthcare and is not, necessarily, about knowledge creation (as is the case for basic research). H owever, in our opinion, this concern arises from the misplaced assumption that clinical researchers will be compared directly with those basic scientists publishing in highly cited journals such as N ature or Science. In this study we have controlled for this by, firstly, only evaluating research that has occurred in a clinical setting (i.e. the N H S) and, secondly, by using the research level classification developed by CHI Research Inc. (although we accept that this is a rather crude tool and one that could be refined in subsequent research).

A second issue is that high-impact research may not be best measured by citation analysis. For example, an article in, say, (the non peer-
reviewed) Nursing Times may have a greater clinical impact than a paper published in, say, (the peer-reviewed) Clinical Genetics Likewise, research that informs systematic reviews, national clinical guidelines etc. (at Stage IV Secondary O utput in the payback model; Figure 1.2, p. 12) may have a greater clinical impact than a paper published in Nature. Previously, the Wellcome Trust has undertaken some work to 'link' funding with publications and their citation on clinical guidelines (see Box F), but this only goes some way in developing a clinically-relevant impact factor. We see this as an important area for future bibliometric research. One possible protocol would be to identify (via survey or previous research) what type of publication (whether a paper, systematic review or clinical guideline etc.) has the greatest impact on clinical practice and see by how many degrees the original research (published in the peer-reviewed literature) is 'removed' from that publication. Journals that are more likely to be cited in more clinically relevant publications (e.g. a clinical guideline) could receive a greater weight than other journals. This weight could then be scaled depending on how 'close' (in terms of generations of citations) the original research was to clinically-relevant publications. Obviously such a system would

Box F - Measuring citations on clinical guidelines

Papers cited in clinical guidelines may prove to be a useful alternative for measuring impact. A recent study investigated the use of this indicator and, among other things, concluded that:

- The median age of papers cited in clinical guidelines is eight years;
- Most papers are published by authors living in either the USA (36\%) or the UK (25\%); and
- Clinical guidelines do not cite basic research.

From a policy viewpoint this study raised two important issues. First was the finding that UK clinical guidelines disproportionately cite research papers in the UK - 25% of citations are from the UK, whereas only 10% of all biomedical papers are from the UK.

The study finds no evidence of publication bias and therefore concluded that preferential citing of UK papers may provide good evidence for supporting a local science base. If $s 0$, then the central policy question is does a strong science base lead to improved clinical practice?

A second policy relevant finding was that clinical guidelines do not cite basic research. By tracing the research process through four preceding generations of citations, the authors conclude that it takes about 17 years for basic research to feed into clinical practice. Furthermore, the proportion of basic (i.e. RL=4) research papers increased from 0.2% to 8% over the four generations of citation, whereas around a quarter of biomedical research in the UK is basic.
need validating but, if workable, could provide a method to evaluate clinical research.

By highlighting these issues, we do not wish to undermine the importance of the findings we present in this report, but to illustrate the difficulties faced by researchers in undertaking studies such as this. Indeed, despite these limita tions, we would encourage other investigators to spend some time thinking about the way research is managed. In a period when researchers are demanding that clinicians practice evidence-based medicine, it is only appropriate and correct that researchers audit and evaluate the research outputs and outcomes of their own investigations.

Policy implications and research agenda

Given the quantity of data presented in this project, it is not possible to draw out every policy implication from the study. Indeed, it is likely that there will be specific issues relevant to different subfields and for this reason we have published all the data in the Appendix. In this section we have decided to focus on three issues which we believe to have generic relevance to R\&D managers in the NHS and elsewhere. They are: the characteristics of high-impact research; the role of basic research in supporting clinical advance; and the effectiveness and efficiency of partnerships.

Supporting high-impact research

The analysis we have presented confirms previous observations that high-impact (W4) research is associated with multi-authored multi-funded papers ${ }^{20}$. Naturally, such an observation could be confounded by other inputs (for example, the research level of a paper, the increase in funding and authorship etc.) and multivariate analysis will be the subject of future research 9 . As noted earlier, the association between multiplefunding and impact is plausible. Themore times that research proposals have been through a peer-review funding process, the more likely that
the subsequent research is of high quality and thus published in high-impact research journals.

From a policy perspectivethis suggests that the NHS should continue to develop systems to ensure that all research it funds (via whatever mechanism) is quality assured through peer (or other forms of) review. This would mean that 'own account' research - those 47\% of publications without a funding acknowledgement but, presumably, initiated and paid for by the NHS should be discouraged. Indeed, following a review of the NHS R\&D Levy, the NHS recently published a new framework for managing R\&D (see Box G, p. 39). This document states that 'R\&D in the NHS...will normally involve appropriateexternal peer review' (paragraph 2.17) although funds will be provided to recognize the costs of preparing protocols to submit for external funding [and] for pilot work' (paragraph 2.35).

These two, potentially conflicting, statements reflect a common problem in R\&D policy. Whilst peer review has been shown (here and elsewhere) to be associated with high-quality research, some of the most important developments in medical research in the last 50 years have been funded from 'soft' (i.e. non-peer reviewed) sources such as 'own account' research. Anecdotal examples include ${ }^{31}$ the introduction of in vitro fertilization, the identification of B-lymphocytes, and the development of radioimmunoassays. In the case of in vitro fertilization, requests for research funding by Steptoe were repeatedly turned down, forcing him to fund the research personally ${ }^{32}$. D espite this inauspicious start, in 1996 over 5000 test tube babies were born in the UK ${ }^{33,34}$.

Thustheissue is one of balance- on one hand the NHS, and other funders, should be supporting first class research, but on the other hand they do not want to be suppressing high-risk innovative research which could provide payback with a paradigm-changing outcome. From bibliometric evidence, we are not in a position to say what that balance should be. To inform this debate we need

[^7]a better understanding of what happens to research that, at the margin, is turned down by per-review funding panels. If some of these projects were subsequently supported from N H S own account funds, it would be possible to compare the output and outcome of those 'soft-' and 'hard-' funded projects which, in terms of quality, are broadly similar inasmuch as they were on the borderline for funding.

Support for basic research in the N HS
O ne of the most interesting observations in this report is that one in six NHS publications are in basic science journals. Moreover, the proportion of research classified as basic increased at an average annual rate of 5\% over the eight-year period of analysis (although, as already noted, there was a decline in basic research outputs in 1996 and 1997).

That said, it is worth noting that 83% (i.e. $14302 /(2907+14302)$ in Table 4.1) of the basic research in the N H S is externally supported (i.e. has a funding body acknowledgement) and the vast majority of this funding is therefore outside the strategic control of NHS R\&D. The new NHS Support for Science funding stream (see Box G) will continue to meet the costs of supporting R\&D in the NHS and thus by implication will continue to underpin basic research in the NHS.

By raising this point we are not arguing that the NHS should not be supporting basic research, but we are suggesting that there needs to be a greater understanding of how basic research actually supports the N H S in achieving its mission. The relationship between basic research, and how it supports clinical research, has often been debated. A recent study of clinical guidelines (described in Box F, p. 36) concluded that, after four generations of citation, only 8% of research underpinning clinical guidelines (and thus a healthcare intervention) is basic (i.e. $R L=4)^{5}$. This observation, however, is at odds with Comroe and Dripps seminal study which concluded that 40\% of all research articles judged to be essential for later clinical advance were not clinically oriented at the time of the study ${ }^{35}$. H owever, to further confuse the debate, the validity of the Comroe and Dripps' study has been questioned on the premise that the methodology is not repeatable ${ }^{36}$. In other words, the relationship between basic research and clinical advance is not clear, and there is an urgent need to develop our understanding in this area if R\&D managers are going to be able to make informed, evidence-based, decisions on the type of research to be supported.

Table 4.1: Research level of unacknowledged papers

Research level	Acknowledged papers	Unacknowledged papers
Clinical observation $($ RL $=1)$	8225	20217
Clinical mix $(R L=2)$	17334	17682
Clinical investigation $(R L=3)$	15780	7131
Basic (RL $=4)$	14302	2907
Not classified	1602	57243
Total	570	

Box G - Research and Development for a First Class Service

On 30 March 2000, the Parliamentary Under Secretary of State for Health announced a new statement of policy and principles and a development programme to carry through reforms of NHS R\&D. These are set out in Research and Development for a First Class Service: R\&D funding in the new NHS. This document replacesThe Strategic Framework for the use of the NHS R\&D Levy (1997).

From A pril 2001, N HS R\&D funding will be organized into two funding streams: NHS Support for Science; and NHS Priorities and N eeds R\&D Funding. The diagram shows how the current components of NHS R\&D funding will relate to the new systems.

Components of NHS R\&D Funding

NHS Priorities and N eeds R\&D Funding will support research that is needed to underpin modernization and quality improvements in the health service. It will address:

- the implementation of NHS priorities;
- the programme of N ational Service Framework and N ational Performance Assessment Framework;
- the work of the N ational Institute for Clinical Excellence; and
- the needs of the NHS in implementing Government policy.

N HS Support for Science will be available to NHS providers to meet costs they incur in supporting R\&D in the NHS under the direction and quality assurance of an eligible $R \& D$ funding partner (such as the MRC and medical research charities) and NHS Priorities and N eeds R\&D Funding.

Funding will be separated into N HS Support for Science and NHS Priorities and N eeds R\&D Funding from 2001/2. As the new funding systems are introduced, a quality framework of research governance for NHS R\&D will be developed to improve leadership and systems to deliver results and performance management. This will include arrangements for reviewing the outputs, outcomes and value for money of research.

The effectiveness and efficiency of partnership
As we have repeated many times in this report, collaborative research is associated with high-impact research publications. Collaboration and especially multiple funding requires clear and transparent lines of accountability. With such mechanisms in place, it would seem entirely appropriate that the NHS and others promote and foster collaboration - be that by bringing together individual scientists or
funding agencies. However, in doing so we should make a distinction between the effectiveness and efficiency of partnerships. Effectiveness could be measured as the number of high-impact publications, whilst efficiency could be the cost per paper or citation of high-impact publications. This is perhaps best illustrated with reference to Figure 3.2 (p. 23). In this diagram the London region is obviously the most effective region -
it produces more research than any other region. H owever, London accounts for 70% of the NHS R\&D budget and thus, in terms of (cost) efficiency (Table 4.2) it has the highest estimated cost per paper. H owever, this type of input:output ratio has some inherent flaws. First, is the time lag between input and output (one that is solved by comparing inputs at time t with outputs at time t plus 2-3 years). The second is the issue of attribution. For example, a publication may have a number of authors, from different N H S regions supported by different funding agencies. In this, not untypical example, how does one attribute the inputs and outputs to calculate cost-efficiency ratios? This is perhaps best illustrated with reference to Table 4.2, where the N orth West has a higher cost efficiency (as measured by the cost of a paper published in 1997 from the amount estimated to have been invested by the N H S in 1995) than London. Part of the reason is that the North West's NHS R\&D budget is small (estimated $£ 23.7 \mathrm{~m}$ in 1995) but nearly one-inten of its papers are indirectly supported by London through collaboration (Figure 3.5, p. 25). Conversely, London's N H S R \& D budget is over ten times greater (estimated $£ 275 \mathrm{~m}$ in 1995), but only one-in-fifty of its papers are co-authored with the North West. In other
words, the investment from London to the North West is four times greater than in the opposite direction, making it very difficult to attribute the financial inputs to published papers. An associated problem is that because the medical schools in London have traditionally been less associated with 'broader' universities there is less chance in London than elsewhere of biomedical papers from non-NHS parts of the university being included as part of the NH S output. This may lead in some cases to the number of papers from regions outside London being somewhat inflated.

These examples illustrate the difficulties in developing meaningful cost-efficiency indicators for R\&D (and we have made no attempt to include funding external to the N H S). The way public domain research in the UK is organized means that there are multiple inputs from a pluralistic funding sector which contribute to the production of knowledge through peerreviewed publications. Given the immense complexity of the system we would caution against the use of cost-efficiency indicators. Further research on the link between input and output is clearly needed, although perfect hypothecation of one by the other will always be difficult, if only because the timescale is always out of synchrony. The extent to which the existing

Table 4.2: Illustrative example of the effectiveness and efficiency of research by NHSE region

Region	Estimated R\&D (£ m) expenditure (1995)a,b	Research outputs (1997)	Cost (£) per paper
N orthern \& Yorkshire	18.6	1267	14680
Trent	21.2	1689	12551
W est Midlands	10.9	1038	10500
N orth W est	22.7	1711	13267
Eastern	7.0	942	7430
London	275.0	6145	44751
South East	15.0	1995	7518
South W est	18.7	966	19358

[^8]ratios should cautiously inform current decision making, or should be regarded purely as 'work in progress', is a matter of judgement.

Future development of the NHS research outputs dataset

This research project began in February 1999 as a collaboration between the Wellcome Trust's Unit for Policy Research in Science and Medicine (PRISM) and the London Regional Office of the NHSE. As part of this project, the London Regional Office of the NH SE paid for an 'NHS fellow' (M ichael Yare) to work within PRISM to benchmark NHS research outputs, using ROD data and the expertise of staff in the Unit.

In 0 ctober 1999, PRISM was refocused and renamed as the Wellcome Trust's Policy Unit. As part of this process it was decided to outsource ROD. Following a competitive tendering process, City University's Department for Informatics won a contract to take over the maintenance and development of ROD. At the same time it was decided to transfer the N H S fellow to the Health Economics Research Group at Brunel University (the developers of the payback model). HERG have now taken over this project (although collaborative links will be maintained with the Wellcome Trust) and thus any suggestions for future research should be addressed to themr

[^9]
Methodology

Research papers considered The ROD contains three types of record (limited to articles, notes and reviews with a UK address):

- papers that have been checked for funding (status A);
- papers that have not yet been checked (status C);
- papers that have been deleted, usually because they did not have a UK address (status D).
O nly status A papers are used for fundingrelated analyses whereas for global counts all status A and C papers are counted.

Research Leved A Research Level (RL) value can be determined for each journal. It is a number from clinical observation $=1$ to basic research $=4$ which characterizes the majority of the papers in a journal by their research type, based on expert opinion and journal-to-journal citation patterns. Values for many journals have been determined by CHI Research Inc., and this categorization system is becoming an industry standard for the classification of research journals.

Potential impact of research (W) For each paper a W value has been calculated to indicate the level of average citation impact of the journal in which it was published. For any given group of papers the W values were calculated as follows:

- First, all the journals in a group were listed in descending order of frequency of use;
- Second, a 'core set' of journals was identified, which accounted for about 85% of the total number of papers;
- Third, the core set of journals was listed in descending order of five-year impact factor, determined as the mean number of citations from 1994-98 to papers published in 1994;
- Fourth, the top 10% of these journals were assigned a weighting, W , of 4 ; the next 20% $W=3$; the next $30 \% W=2$ and the bottom $40 \% \mathrm{~W}=1$.

Subfield definition The first step is to identify papers with addresses containing relevant keywords (i.e. from specialist departments)
which are likely to be mostly within the subfield and to derive from these a list of specialist journals. A sample of papers from all of these journals, and ones from the named departments, are then processed to list all the title words used and place them in descending order of frequency of use. These words are scanned by experts in the field and a proportion retained as being indicative of a paper relevant to that subfield. The performance of the filter is then checked by printing out sets of papers (titles and journal names) to check for their relevance to the subfield, and to provide data with which the filter may be calibrated. Two methods of calibration are used, one based on the relative numbers of papers in specialist and general journals, and another based on the relative numbers of papers retrieved and not retrieved from specialist departments. The two methods are independent and afford a check on the system. The filter calibration factor is an estimate of the number of papers actually present in a subfield compared with the number identified by the filter.

Methodological caveats

Filters It was apparent during filter development that some were much better than others, i.e. they had both better recall and better precision. T hese were the filters for papers associated with particular parts of the human body, e.g. gastroenterology. None of the figures in this report have been adjusted by the calibration factors but the true absolute number of biomedical publications in any given subfield may be estimated by multiplying by the calibration factor (which is available from the authors on request).

SCI/SSCI The Research Outputs D atabase (ROD) is based on data available within ISI's (Institute for Scientific Information) Science and Social Sciences Citation Indeces (SCI/SSCI) with the addition of further postcode checks and funding information. This leaves ROD open to the same criticisms as these indices. This is not the case for subfield filters that are developed independently of ISI (Institute for Scientific Information).

One major concern is the journal coverage of the Science Citation Index. The database has been based on the CD-ROM version of the SCI until 2000 but has expanded in more recent years to cover more journals. T his creates a moving target when attempting to indicate research trends and may impact on one subfield more than another. The only way to overcome this problem is always to consider changes in output in any given subfield at the national level as a proportion of world papers. In this way any changes are standardized for the changing base and should remain relatively comparable from one country to the next.

Another problem is the 'bias' towards interna tional journals which precludes much research of any one country that may bein local national journals in the language of origin. The SCI has a tendency to cover journals of higher renown in the English language causing biases in any interna tional comparisons, and this tendency is even more pronounced in the SSCI. As this report concentrates on national trends of the NH , albeit in an increasingly global climate, and research that is predominantly in the English language, these problems may be less important here but are still worth noting.

W ithin theUK wemay talk about increases or decreases in the output of a funding sector or in a given subfield but these must be considered in relation to overall movementsfrom year to year in UK biomedicine as a whole. The biomedical filter used to develop the ROD is country specific, i.e. it usesUK address keywords. It is not therefore fully appropriate to use for the identification of biomedical papers from other countries or from theSCI as a whole. T hus although wehave shown that publications increased between 1990 and 1997, it is not clear what has happened to thetrue level of world biomedical publications (as defined here) in that time, although it appears to have increased steadily, by about 3\% per year, based on the application of the filter to the SCI alone.

The Research O utputs D atabase
 Paper identification The bibliographic records for inclusion in the ROD are selected

from the Science Citation Index (SCI) and the Social Sciences Citation Index (SSCI) CD-ROM s under a licence agreement with ISI in Philadelphia. These databases are not only multidisciplinary and give coverage of all the scientific areas of interest, but they also contain all the authors' names and all the addresses in a standardized format. The ROD is intended to cover all UK papers in the scientific areas of interest to theTrust and the ROD members.

In order to select relevant papers from journals other than those classed as biomedical, and in particular important multidisciplinary journals such as N ature and Science, an additional keyword filter is used to search the address field of all UK papers. These words are of two types, specific (such as GLAXO or M RC) and generic (such as the contractions CAN C - cancer, or BIO CH EM - biochemistry, used by the compilers of theSCI). The biomedical filter is checked and refined prior to the start of each campaign to ensure a comprehensive search of the CD-ROM s.

D atabase architecture A relational data model was chosen for implementation of the database that provides data integrity and allows flexible data analysis through the mapping of reationships between parameters. The relational database management system Oracle 7 was selected, running on a H ewlett-Packard UNIX machine.

Recording funding information Once the paper data are loaded into the database, the funding details are manually noted by inspection of the original sources. Recorders (history graduates) are supplied with workbooks each listing approximately 1000 papers and a thesaurus of funding bodies with threeletter (trigraph) codes, see below. Thejournals covered in the workbooks may be found in several libraries, and the workbooks list the journals and their shelf references for ease of location. The libraries mainly used are:

- The Science Reference Library (SRL), part of the British Library (in two parts);
- The library of the Royal Society of M edicine (RSM);
- The library of the British Medical Association (BM A);
- The libraries of University College, London (UCL) and its constituent medical schools.

Six types of funding are recorded in the workbooks, as follows:

- Intramural support (from the addresses on the paper);
- Extramural;
- Personal (e.g. fellowship or studentship);
- Travel;
- Equipment;
- In-kind (often a gift of a pharmaceutical drug).

Funding body thesaurus The funding body thesaurus database, developed within the Wellcome Trust using M S Access, currently lists approximately 9500 different bodies funding biomedical research from many different countries, of which some 3640 are from the UK. Each is assigned a unique threeletter code in addition to its country code (two-digit ISO code) and organizational category. Currently the categories in use are as follows:

- BT Biotechnology company
- CH Charity, collecting from the public
- FO Foundation, endowed or with a single source (e.g. a company)
- GA Government agency (not controlled by ministers)
- GD G overnment department
- HT Hospital trustees (funds associated with a particular hospital)
- IN Industry (non-pharmaceutical)
- IP Industry (pharmaceutical)
- LA Local or regional authority
- NP Not-for-profit (including some charities not primarily supporting research)
- MI Mixed (collecting charity and endoment; mainly academic own funds)
- SN Subsidiary industrial organization (non-pharmaceutical)
- SP Subsidiary industrial organization (pharmaceutical)
- VP Veterinary practice
- XX Unidentified

New or unrecognized funding bodies found by the recorders are temporarily assigned a numerical code and the details noted in the workbooks for investigation within the Trust. Some are found to have existing codes, some are assigned new codes and some are not sources of funding and therefore ignored.

New funding bodies are investigated using available information sources to determine their country and their category, and whether they are in fact the same as an organization previously listed. Some funding bodies are acknowledged with their names in English and some in other languages; some with their full names and some with only their initials. In the past, books and other readily available directories were consulted but currently the Internet (through the use of many search engines and online databases) is proving to be an excellent source of new funding body information. It is particularly valuable for organizations identified only by their initial sor acronyms. W hen they are found, the addresses of the relevant web pages are recorded for future reference.

Inevitably, there are many organizations with but a single paper in the ROD acknowledging their support. This creates a very long tail of funding bodies which occupies space in the thesaurus and makes it needlessly long. To simplify the problem, a system of 'generic' codes, which include numeric as well as alphabetic characters, has been adopted for the grouping of minor funding bodies in the larger countries (other than the UK). Thus 'X12' designates a US foundation and 'X4B' a Swedish biotech company.

Data entry process Once the workbooks holding the indexed acknowledgements are returned to the Trust, all queries resolved and new funding body codes assigned, the funding acknowledgements are entered into the database. This is done separately by two
different data entry clerks and procedurally cross-checked. Any inconsistencies are resolved and corrections are made.

Postcode correction and addition All UK postcodes are checked for consistency and are corrected where necessary. If a postcode is missing from a paper and no address with the correct postcode exists on other papers in the $R O D$, then it is determined by reference to a postcode CD-ROM compiled by the Post O ffice, or other references such asT he H ospitals and H ealth Services Year Book. If the address cannot be identified precisely by postcode (e.g. UNIV-OXFORD), a 'dummy' postcode is entered. The area code (the first one or two letters) is entered if it is obvious, followed by dummy values: this allows the paper to be assigned to the correct geographical area for mapping purposes.

Quality assurance A photocopy of the address and acknowledgement sections of every 100th paper is made by the recorders. Thefunding bodies recorded in the workbook are checked against the photocopies within the

Trust and any errors are noted and fed back to the recorders to resolve any misunderstanding or lack of clarity in the guidelines.

ROD club membership Access to detailed data in the ROD is through a club membership scheme. It is open to all organizations funding or carrying out research in the UK or Ireland. M embership is currently in four classes with annual subscriptions based on either biomedical research expenditure (for funding bodies) or external income (for research performers) in the UK and Ireland. It provides a wide variety of benefits, including:

- An annual cumulative list of papers supported or published by the funding organization;
- Attendance at or representation on the ROD Club M embers' Committee to influence the development of the database;
- Invitations to seminars on research outputs;
- Complimentary copies of research reports and publications;
- Consultancy time to help with analysis and interpretation (with an initial free allowance).

Table A1: Profile of anaesthetics research

			JOURNAL IMPACT				
			$\begin{aligned} & \text { W } 1 \\ & \text { (LOW) } \end{aligned}$	W 2	W 3	$\begin{gathered} \text { W } 4 \\ \text { (HIGH) } \end{gathered}$	Total
Number of publications The average annual percentage growth AAPG - is calculated for 1990-97	England	N	1511	2690	738	522	5461
		AAPG	~	~	\sim	~	0.31\%
	NHS	N	1072	2372	479	348	4271
		AAPG	\sim	\sim	~	~	1.04\%
	W T/N HS	N	29	50	43	26	148
		AAPG	\sim	\sim	\sim	\sim	11.71\%
	London	N	455	831	246	182	1714
		AAPG	\sim	\sim	\sim	\sim	-3.05\%
Mean (and standard error) number of authors per paper	England	Mean	2.91	3.35	4.58	4.08	3.48
		SE	0.051	0.036	0.383	0.147	0.059
	NHS	Mean	2.93	3.33	5.06	4.28	3.51
		SE	0.060	0.036	0.585	0.1875	0.073
	W T/N HS	Mean	3.79	3.84	4.23	4.42	4.05
		SE	0.221	0.181	0.347	1.445	0.151
	London	Mean	3.07	3.60	4.74	4.38	3.72
		SE	0.102	0.064	0.294	0.248	0.066
Number of papers by research level (136 papers for England, 101 papers for the NHS and 29 papers for London did not have a research level and were excluded from this analysis)	England	1 (Clinical)	565	1220	183	119	2087
		2	435	1167	159	90	1851
		3	222	145	311	222	900
		4 (Basic)	203	112	82	90	487
	NHS	1 (Clinical)	517	1153	171	108	1949
		2	301	1051	129	77	1558
		3	119	87	148	129	483
		4 (Basic)	74	44	29	33	180
	W T/N HS	1 (Clinical)	1	12	6	1	20
		2	7	19	4	5	35
		3	8	6	29	10	53
		4 (Basic)	13	11	4	10	38
	London	1 (Clinical)	199	404	85	45	733
		2	129	349	60	50	588
		3	61	34	78	60	233
		4 (Basic)	51	31	23	26	131
Research funder (The public category is the sum of Government and none. The figures can add up to more than 100% because of multiple funding)	England	Government	235	296	221	178	930
		PN P	298	358	225	179	1060
		Industry	221	505	270	151	1147
		N one	925	1758	228	170	3081
		Public	1160	2054	449	348	4011
	NHS	Government	99	228	110	100	537
		PN P	164	291	142	108	705
		Industry	108	377	137	75	697
		N one	772	1640	196	145	2753
		Public	871	1868	306	245	3290
	London	Government	44	97	55	45	241
		PN P	97	118	92	62	369
		Industry	42	140	79	53	314
		N one	309	535	79	65	988
		Public	353	632	134	110	1229

Table A2: Profile of arthritis and rheumatism research

				JOU	AL IM		
			$\left(\begin{array}{c} \text { (Low) } \end{array}\right.$	W 2	W 3	$\underset{(H 1 G H)}{(H)}$	Total
Number of publications	England	N	2220	2913	1130	394	6657
		AAPG	~	~	~	~	2.55\%
(The average annual	NHS	N	1646	2257	743	223	4869
AAPG - is calculated for		AAPG	~	~	~	~	0.66\%
1990-97)	W T/N HS	N	60	120	65	42	287
		AAPG	~	~	~	~	1.98\%
	London	N	745	1096	419	154	2414
		AAPG	~	~	~	~	-2.76\%
Mean (and standard	England	Mean	3.63	4.38	5.13	5.98	4.37
error) number of authors per pape		SE	0.051	0.067	0.135	0.148	0.043
	NHS	Mean	3.64	4.45	5.07	6.14	4.37
		SE	0.060	0.070	0.134	0.194	0.046
	W T/N HS	Mean	4.65	4.70	5.17	5.93	4.98
		SE	0.242	0.223	0.235	0.474	0.139
	London	Mean	4.00	4.88	5.61	6.09	4.84
		SE	0.111	0.108	0.205	0.236	0.073
Number of papers by	England	1 (Clinical)	442	791	110	0	1343
research level		2	839	1452	295	63	2649
(379 papers for		3	358	504	499	248	1609
England, 310 papers for		4 (Basic)	216	153	225	83	677
the NHS and 113	NHS	1 (Clinical)	384	658	91	0	1133
papers for London did		2	644	1159	224	48	2075
level and were excluded		3	203	341	308	131	983
from this analysis)		4 (Basic)	111	93	120	44	368
	W T/N HS	1 (Clinical)	8	23	4	0	35
		2	22	51	7	7	87
		3	14	33	40	29	116
		4 (Basic)	14	13	14	6	47
	London	1 (Clinical)	160	273	36	0	469
		2	316	549	148	32	1045
		3	97	205	167	98	567
		4 (Basic)	62	66	68	24	220
Research funder	England	Government	401	739	410	223	1773
		PN P	723	1391	669	311	3094
		Industry	255	446	249	129	1079
and none. The figures		None	1187	1069	253	33	2542
can add up to more		Public	2566	3645	1581	696	8488
than 100\% because of	NHS	Government	251	540	248	115	1154
mutiple funding)		PN P	455	1004	422	168	2049
		Industry	132	307	129	66	634
		None	1013	931	201	24	2169
		Public	1264	1471	449	139	3323
	London	Government	139	311	161	84	695
		PNP	240	551	249	118	1158
		Industry	61	176	79	47	363
		None	420	365	99	14	898
		Public	559	676	260	98	1593

Table A3: Profile of asthma research

				JOU	AL IM		
			$\begin{gathered} \text { W } 1 \\ \text { (LOW) } \end{gathered}$	W 2	W 3	$\begin{gathered} \text { W } 4 \\ (H I G H) \end{gathered}$	Total
N umber of publications	England	N	907	524	325	174	1930
		AAPG	\sim	~	~	~	5.91\%
The average annual	NHS	N	641	349	239	125	1354
AAPG - is calculated for		AAPG	~	\sim	~	~	3.61\%
1990-97	W T/N HS	N	13	24	19	18	74
		AAPG	~	~	\sim	~	5.56\%
	London	N	271	172	113	70	626
		AAPG	~	\sim	~	~	0.11\%
Mean (and standard	England	Mean	3.49	4.26	5.37	5.12	4.17
error) number of		SE	0.116	0.186	0.298	0.388	0.066
	NHS	Mean	3.59	4.44	5.38	5.06	4.27
		SE	0.142	0.238	0.348	0.453	0.080
	W T/N HS	Mean	4.92	4.58	6.37	7.00	5.6
		SE	0.625	0.380	0.593	0.780	0.311
	London	Mean	3.60	4.83	5.82	5.01	4.50
		SE	0.262	0.302	0.477	0.965	0.141
Number of papers by	England	1 (Clinical)	483	6	66	0	555
research level		2	192	187	206	127	712
(45 papers for England,		3	158	305	14	39	516
23 papers for the NHS		4 (Basic)	31	26	37	8	102
and 7 papers for	NHS	1 (Clinical)	389	6	59	0	454
London did not have a		2	141	136	153	103	533
excluded from this		3	75	195	3	18	291
analysis)		4 (Basic)	14	12	23	4	53
	W T/N HS	1 (Clinical)	6	0	2	0	8
		2	4	12	8	12	36
		3	2	11	2	3	18
		4 (Basic)	1	1	7	3	12
	London	1 (Clinical)	162	5	21	0	188
		2	63	53	78	61	255
		3	32	107	2	8	149
		4 (Basic)	7	7	12	1	27
Research funder	England	Government	127	115	140	75	457
		PN P	190	144	135	84	553
(The public category is the sum of Government		Industry	281	222	127	71	701
and none. The figures		N one	436	178	78	38	730
can add up to more		Public	563	293	218	113	1187
than 100\% because of	NHS	Government	92	82	100	46	320
muttiple funding)		PN P	140	100	102	68	410
		Industry	146	115	77	48	386
		N one	345	139	64	25	573
		Public	437	221	164	71	893
	London	Government	39	44	56	24	163
		PN P	76	58	55	39	228
		Industry	70	60	42	31	203
		N one	134	62	17	15	228
		Public	173	106	73	39	391

Table A4: Profile of cardiology research

Table A5: Profile of clinical trials research

			JOURNAL IMPACT				
			$\begin{gathered} \text { W } 1 \\ \text { (LOW) } \end{gathered}$	W 2	W 3	$\begin{array}{r} \text { W } 4 \\ \text { (HIGH) } \end{array}$	Total
Number of publications The average annual percentage growth AAPG - is calculated for 1990-97	England	N	1283	817	727	317	3144
		AAPG	\sim	~	\sim	~	8.75\%
	NHS	N	943	691	593	262	2489
		AAPG	~	~	~	~	7.44\%
	W T/N HS	N	16	21	34	14	85
		AAPG	~	~	~	~	25.58\%
	London	N	360	318	292	171	1141
		AAPG	\sim	\sim	~	\sim	9.18\%
Mean (and standard error) number of authors per paper	England	Mean	5.46	6.60	7.28	17.67	7.47
		SE	0.308	0.292	0.481	1.903	0.287
	NHS	Mean	5.79	6.69	7.34	18.23	7.78
		SE	0.407	0.335	0.558	2.380	0.346
	W T/N HS	Mean	6.25	10.86	5.91	10.64	7.98
		SE	0.727	5.410	0.579	2.495	1.420
	London	Mean	7.13	8.10	7.19	20.96	9.54
		SE	0.732	0.660	0.580	3.241	0.607
N umber of papers by research level (198 papers for England, 144 papers for the NHS and 48 papers for London did not have a research level and were excluded from this analysis)	England	1 (Clinical)	456	186	347	17	1006
		2	470	443	254	266	1433
		3	154	163	112	29	458
		4 (Basic)	22	17	5	5	49
	NHS	1 (Clinical)	359	174	284	11	828
		2	345	375	216	225	1161
		3	97	135	86	22	340
		4 (Basic)	7	3	2	4	16
	W T/N HS	1 (Clinical)	3	0	21	2	26
		2	8	13	8	11	40
		3	3	5	5	0	13
		4 (Basic)	2	2	0	1	5
	London	1 (Clinical)	137	65	140	7	349
		2	131	181	119	148	579
		3	45	68	31	14	158
		4 (Basic)	2	1	2	2	7
Research funder (The public category is the sum of Government and none. The figures can add up to more than 100% because of multiple funding)	England	Government	282	203	279	142	906
		PN P	267	270	307	158	1002
		Industry	393	290	200	142	1025
		N one	549	250	162	35	996
		Public	831	453	441	177	1902
	NHS	Government	173	158	213	106	650
		PN P	192	237	258	130	817
		Industry	251	237	170	110	768
		N one	161	95	60	23	339
		Public	334	253	273	129	989
	London	Government	56	65	100	67	288
		PN P	80	112	128	84	404
		Industry	113	133	86	76	408
		N one	161	95	60	23	339
		Public	217	160	160	90	627

Table A6: Profile of diabetes research

Table A7: Profile of gastroenterology research

			JOURNAL IMPACT				
			$\begin{array}{r} \text { W } 1 \\ \text { (LOW) } \end{array}$	W 2	W 3	$\begin{gathered} \text { W } 4 \\ (\text { HIGH }) \end{gathered}$	Total
Number of publications The average annual percentage growth AAPG - is calculated for 1990-97	England	N	5093	4348	3424	1360	14225
		AAPG	~	~	~	~	0.08\%
	NHS	N	3311	3098	2263	832	9504
		AAPG	\sim	~	~	~	-0.66\%
	W T/N HS	N	115	154	165	113	447
		AAPG	\sim	\sim	~	\sim	-3.95\%
	London	N	1524	1500	1172	556	4752
		AAPG	\sim	\sim	\sim	\sim	-2.42\%
Mean (and standard error) number of authors per paper	England	Mean	3.59	4.34	4.77	6.30	4.39
		SE	0.030	0.044	0.054	0.131	0.026
	NHS	Mean	3.57	4.40	4.91	6.48	4.44
		SE	0.038	0.055	0.070	0.190	0.034
	W T/N HS	Mean	4.11	4.90	5.25	5.99	5.07
		SE	0.185	0.166	0.275	0.283	0.134
	London	Mean	3.74	4.79	5.19	6.94	4.83
		SE	0.063	0.091	0.082	0.251	0.052
Number of papers by research level (568 papers for England, 293 papers for the NHS and 146 papers for London did not have a research level and were excluded from this analysis)	England	1 (Clinical)	1535	1205	261	12	3013
		2	1445	1813	1551	800	5609
		3	1029	859	934	286	3108
		4 (Basic)	561	435	673	258	1927
	NHS	1 (Clinical)	1289	1031	218	8	2546
		2	979	1444	1261	595	4279
		3	542	456	521	145	1664
		4 (Basic)	221	156	261	84	722
	W T/N HS	1 (Clinical)	10	24	3	1	38
		2	42	73	72	73	260
		3	35	35	47	22	139
		4 (Basic)	28	22	43	17	110
	London	1 (Clinical)	560	453	107	6	1126
		2	480	734	675	426	2315
		3	247	237	279	85	848
		4 (Basic)	103	64	111	39	317
Research funder (The public category is the sum of Government and none. The figures can add up to more than 100% because of multiple funding)	England	Government	1174	1204	1203	650	4231
		PN P	1075	1218	1367	716	4376
		Industry	674	733	683	307	2397
		N one	2877	2021	1142	275	6315
		Public	4051	3225	2345	925	10546
	NHS	Government	533	699	622	344	2198
		PN P	593	804	839	410	2646
		Industry	271	427	359	178	1235
		N one	2239	1656	939	214	5048
		Public	2772	2355	1561	558	7246
	London	Government	214	298	309	198	1019
		PN P	326	482	481	267	1556
		Industry	100	190	167	133	590
		N one	1028	780	467	158	2433
		Public	1242	1078	776	356	3452

Table A8: Profile of genetics research

Table A9: Profile of gerontology research

Table A10: Profile of haematology research

Table A11: Profile of intensive care research

				JOU	AL IM		
			$\begin{aligned} & \text { W } 1 \\ & \text { (LOW) } \end{aligned}$	W 2	W 3	$\begin{array}{r} \text { W } 4 \\ (H I G H) \end{array}$	Total
Number of publications	England	N	473	849	323	210	1855
		AAPG	~	\sim	\sim	~	2.22\%
The average annual percentage growth -	NHS	N	406	752	282	175	1615
AAPG - is calculated for		AAPG	\sim	~	~	\sim	2.19\%
1990-97	W T/N HS	N	5	26	15	10	56
		AAPG	\sim	\sim	~	\sim	6.02\%
	London	N	164	304	174	113	755
		AAPG	\sim	~	\sim	~	-1.19\%
Mean (and standard	England	Mean	3.01	3.66	5.93	6.37	4.23
error) number of		SE	0.062	0.092	1.020	1.880	0.215
	NHS	Mean	3.07	3.64	6.17	6.62	4.23
		SE	0.064	0.087	1.235	2.762	0.244
	W T/N HS	Mean	4.80	4.23	5.40	4.70	4.68
		SE	0.969	0.393	0.748	0.650	0.306
	London	Mean	3.09	3.96	5.34	8.39	4.79
		SE	0.101	0.121	0.567	3.770	0.372
Number of papers by	England	1 (Clinical)	243	424	142	68	877
research level		2	117	270	92	101	580
(72 papers for England,		3	34	92	77	28	231
53 papers for the NHS		4 (Basic)	9	61	12	13	95
and 24 papers for	NHS	1 (Clinical)	235	396	130	59	820
London did not have a		2	90	246	88	86	510
excluded from this		3	24	77	58	21	180
analysis)		4 (Basic)	6	31	6	9	52
	W T/N HS	1 (Clinical)	2	4	2	1	9
		2	2	10	7	5	24
		3	0	3	5	2	10
		4 (Basic)	1	9	1	2	13
	London	1 (Clinical)	88	170	67	22	347
		2	40	78	61	74	253
		3	8	29	41	10	88
		4 (Basic)	5	26	5	7	43
Research funder	England	Government	57	122	83	51	313
		PN P	72	176	95	69	412
(The public category is the sum of Government		Industry	35	107	75	25	242
and none. The figures		N one	344	534	150	96	1124
can add up to more		Public	401	656	233	147	1437
than 100\% because of	NHS	Government	42	101	63	39	245
		PN P	49	142	83	55	329
		Industry	23	88	59	18	188
		N one	318	492	142	87	1039
		Public	360	593	205	126	1284
	London	Government	12	52	40	23	127
		PN P	21	80	57	41	199
		Industry	9	32	41	15	97
		N one	133	181	81	49	444
		Public	145	233	121	72	571

Table A12: Profile of neonatology research

Table A13: Profile of neurosciences research

Table A14: Profile of nursing research

				JO U RNAL IMPACT			

Table A15: Profile of obstetrics and gynaecology research

Table A16: Profile of paediatrics research

Table A17: Profile of primary healthcare research

Table A18: Profile of public healthcare research

				Jou	AL IM		
			$\begin{gathered} \hline \text { W1 } \\ \text { (Low) } \end{gathered}$	W 2	W 3	$\underset{(H / G H)}{W}$	Total
Number of publications	England	N	1194	995	636	257	3082
		AAPG	~	~	~	~	10.89\%
The average annual	NHS	N	802	617	458	145	2022
AAPG - is calculated for		AAPG	\sim	\sim	\sim	~	8.63\%
1990-97	W T/N HS	N	16	28	26	20	90
		AAPG	~	~	~	~	14.13\%
	London	N	285	242	207	81	815
		AAPG	~	~	~	~	8.76\%
Mean (and standard	England	Mean	3.25	3.91	4.84	9.74	4.35
error) number of		SE	0.076	0.120	0.195	1.284	0.129
	NHS	Mean	3.22	4.03	5.05	8.81	4.29
		SE	0.064	0.108	0.243	1.824	0.152
	W T/NHS	Mean	5.00	4.82	5.27	6.80	5.42
		SE	0.492	0.468	0.456	0.823	0.289
	London	Mean	3.39	4.24	5.38	6.85	4.51
		SE	0.130	0.183	0.309	0.589	0.127
Number of papers by	England	1 (Clinical)	355	630	324	4	1313
research level		2	203	190	193	200	786
(561 papers for		3	50	162	103	42	357
England, 371 papers for		4 (Basic)	40	5	13	7	65
the NHS and 95 papers	NHS	1 (Clinical)	263	410	242	2	917
for London did not		2	134	145	144	109	532
were excluded from this		3	25	58	66	24	173
analysis)		4 (Basic)	16	2	4	7	29
	W T/N HS	1 (Clinical)	4	21	19	1	45
		2	6	7	2	14	29
		3	0	0	4	,	5
		4 (Basic)	3	0	1	4	8
	London	1 (Clinical)	127	155	110	2	384
		2	49	63	62	63	237
		3	13	24	33	12	82
		4 (Basic)	4	0	2	1	7
Research funder	England	Government	425	510	294	167	1396
		PN P	232	287	287	159	965
(The public category is		Industry	81	83	80	47	291
and none. The figures		None	601	318	177	30	1126
can add up to more		Public	1026	828	471	197	2522
than 100\% because of	NHS	Government	301	334	212	90	937
multiple funding)		PN P	139	193	214	86	632
		Industry	51	47	63	23	184
		None	391	180	116	16	703
		Public	692	514	328	106	1640
	London	Government	88	114	97	48	347
		PN P	67	85	101	45	298
		Industry	17	17	41	13	88
		None	148	87	49	12	296
		Public	236	201	146	60	643

Table A19: Profile of rehabilitation research

Table A20: Profile of respiratory medicine research

			JOURNAL IMPACT				
			$\underset{(\text { (Low) }}{(1)}$	W 2	W 3	$\begin{array}{r} \text { W } 4 \\ (H I G H) \end{array}$	Total
Number of publications The average annual percentage growth AAPG - is calculated for 1990-97	England	N	3590	3075	1444	1106	9215
		AAPG	~	~	~	~	1.94\%
	NHS	N	2633	2408	933	753	6727
		AAPG	~	\sim	~	~	1.60\%
	W T/N HS	N	81	116	89	94	380
		AAPG	~	~	~	~	9.04\%
	London	N	1195	1136	463	460	3254
		AAPG	~	~	~	~	0.55\%
Mean (and standard error) number of authors per paper	England	Mean	3.56	4.14	4.72	5.69	4.20
		SE	0.042	0.049	0.099	0.131	0.033
	NHS	Mean	3.52	4.24	4.78	5.81	4.49
		SE	0.043	0.058	0.121	0.161	0.044
	W T/N HS	Mean	4.69	5.02	5.06	5.88	5.17
		SE	0.253	0.260	0.250	0.350	0.143
	London	Mean	3.53	4.63	5.18	5.84	4.49
		SE	0.064	0.104	0.221	0.227	0.064
Number of papers by research level (326 papers for England, 172 papers for the NHS and 81 papers for London did not have a research level and were excluded from this analysis)	England	1 (Clinical)	1299	1284	197	8	2788
		2	1124	605	617	642	2988
		3	511	947	398	195	2051
		4 (Basic)	339	236	228	259	1062
	NHS	1 (Clinical)	1155	1126	170	6	2457
		2	891	487	471	487	2336
		3	255	671	190	105	1221
		4 (Basic)	165	123	99	154	541
	W T/N HS	1 (Clinical)	11	24	6	0	41
		2	24	22	34	36	116
		3	14	50	24	15	103
		4 (Basic)	32	20	25	43	120
	London	1 (Clinical)	522	511	93	3	1129
		2	410	197	224	310	1141
		3	94	355	99	59	607
		4 (Basic)	90	73	46	87	296
Research Funder (The public category is the sum of government and none. The figures can add up to more than 100% because of multiple funding)	England	Government	820	735	619	527	2701
		PNP	943	942	572	600	3057
		Industry	511	584	356	309	1760
		None	1899	1437	392	210	3938
		Public	2719	2172	1011	737	6639
	NHS	Government	436	514	360	330	1640
		PN P	607	698	363	418	2086
		Industry	263	366	184	191	1004
		None	1652	1264	316	158	3390
		Public	2088	1778	676	488	5030
	London	Government	203	272	176	190	841
		PNP	304	402	195	253	1154
		Industry	128	186	100	129	543
		None	735	535	146	101	1517
		Public	938	807	322	291	2358

Table A21: Profile of stroke research

			JOURNAL IMPACT				
			$\begin{gathered} \text { W } 1 \\ \text { (LOW) } \end{gathered}$	W 2	W 3	$\begin{gathered} \text { W } 4 \\ (H I G H) \end{gathered}$	Total
Number of publications The average annual percentage growth AAPG - is calculated for 1990-97	England	N	390	266	192	221	1069
		AAPG	\sim	\sim	\sim	~	9.71\%
	NHS	N	335	221	154	168	878
		AAPG	\sim	\sim	\sim	~	9.37\%
	W T/N HS	N	4	9	11	17	41
		AAPG	\sim	~	\sim	\sim	3.74\%
	London	N	123	97	51	86	357
		AAPG	\sim	\sim	\sim	\sim	7.93\%
Mean (and standard error) number of authors per paper	England	Mean	3.45	3.82	4.84	6.79	4.51
		SE	0.095	0.123	0.673	1.285	0.301
	NHS	Mean	3.48	3.90	4.95	7.14	4.73
		SE	0.104	0.138	0.811	1.671	0.260
	W T/N HS	Mean	4.25	3.89	4.18	5.65	4.73
		SE	1.377	0.611	0.585	0.606	0.359
	London	Mean	3.92	3.98	6.51	5.57	4.57
		SE	0.219	0.190	2.404	0.777	0.565
Number of papers by research level (66 papers for England, 48 papers for the NHS and 18 papers for London did not have a research level and were excluded from this analysis)	England	1 (Clinical)	221	82	67	130	500
		2	85	114	70	42	311
		3	13	43	34	19	109
		4 (Basic)	12	23	18	30	83
	NHS	1 (Clinical)	205	77	62	108	452
		2	79	104	67	37	287
		3	5	25	15	9	54
		4 (Basic)	4	12	7	14	37
	W T/N HS	1 (Clinical)	2	4	6	4	16
		2	2	3	2	5	12
		3	0	0	0	3	3
		4 (Basic)	0	2	3	5	10
	London	1 (Clinical)	63	36	22	57	178
		2	37	47	19	17	120
		3	3	8	6	3	20
		4 (Basic)	3	6	3	9	21
Research funder (The public category is the sum of Government and none. The figures can add up to more than 100% because of multiple funding)	England	Government	52	47	55	84	238
		PN P	67	78	72	114	331
		Industry	22	36	30	49	137
		N one	280	141	86	52	559
		Public	332	188	141	136	797
	N HS	Government	38	39	43	66	186
		PN P	48	57	60	95	260
		Industry	16	22	15	22	75
		N one	256	134	77	43	510
		Public	294	173	120	109	696
	London	Government	16	17	13	33	79
		PN P	25	27	22	50	124
		Industry	10	5	6	13	34
		N one	87	62	26	20	195
		Public	103	79	39	53	274

Table A22: Profile of surgery research

References

1 Office of Science and Technology (1999) The Forward Look 1999. The Stationery O ffice.

2 Office of Science and Technology (1999) Science, Engineering and Technology Statitics 1999. The Stationery 0 ffice.
3 Funding First (2000) Exceptional Returns: The Economic Value of America's Investment in M edical Research. (www.fundingfirst.org).
4 Grant J (1999) 'Evaluating the outcomes of bio medical research on healthcare', Research Evaluation, 8: 33-38.
5 Grant J, C ottrell R, Cluzeau F and Fawcett G (2000) "Evaluating the "payback" on biomedical research from papers cited in clinical guidelines: applied bibliometric study', BMJ, 320: 1107-1111.
6 National Science Board (1996) Science and Enginering Indi cators- 1996. Washington DC, US G overnment Printing O ffice.
7 See www.hefce.ac.uk
8 Seglen P O (1997) 'W hy the impact factor of journals should not be used for evaluating research', BM J, 314: 497.
$9 \quad \mathrm{M}$ artin $\mathrm{B}(1996)$ 'The use of multiple indicators in the assessment of basic research', Scientometrics, 36: 343-362.
10 Committee on Science, Engineering and Public Policy (1999) Evaluating Federal Research Programs Research and Government Performance and Results Act. National Academy Press, Washington DC.
11 Buxton M and H anney S (1996) 'H ow can pay back from health services research be assessed?' Journal of H ealth Services Research and Policy, 1: 35-43.
12 Buxton M and H anney S (1997) Assessing pay back from D epartment of H ealth Research and Development. Second Report. M ain report. Brunel University H ERG, Research Report No. 25, Vol 1.
13 Buxton M , H anney S, Packwood T, Roberts S and Youll P (1999) A ssessing the benefits from N orth Thames Research and D evelopment. Brunel University H ERG, Research Report No.5.
14 NH SE (1997) Strategic Framework for the use of the NHS R\& D Levy. NH SE, January 1997.
15 Dawson G, Lucocq B, Cottrell R and Lewison G (1998) M apping the landscape: N ational biomedical research outputs 1988-95. The Wellcome Trust, London.
16 Economist (2000) 'The H ealth Effect', 3 June 2000.
17 Department of Health (1991) Rescarch for H ealth. Department of Health, September 1991.
18 H M SO (1994) Supporting Research and Development in the NHS (Culyer Report). H M SO, September, 1994.
19 Department of H ealth (2000) Research and Development for a First Class Service. Department of H ealth, M arch 2000.

20 Lewison G and Dawson G (1998) 'The effect of funding on the outputs of biomedical research', Scientometrics, 41: 17-27.
21 Narin F, Pinski G and GeeH H (1976) 'Structure of the Biomedical Literature', Journal of the American Society for Information Science, Jan-Feb: 25-45.
22 Lewison G (1998) 'N ew bibliometric techniques for the evaluation of medical schools', Scientometrics, 41: 5-16.
23 Lewison G (1996) 'The definition of biomedical research subfields with title keywords and application to the analysis of research outputs', Research Evaluation, 6: 25-36.
24 Black N and Davies S (1999) 'W here do UK health services researchers publish their findings?' Journal of the Royal Society of M edicine, 92 : 129-131.
25 Grant J and Lewison G (1999) 'W here is UK health services research published?', (letter) Journal of the Royal Society of M edicine, 92: 35 .
26 Lewison G, Dawson G and Anderson J (1995) 'The behaviour of biomedical authors in acknowl edging their funding sources', Proceedings of the Fifth International Conference of the International Society for Scientomerrics and Informetrics, 255-264. Learned Information Inc., M edford NJ.
27 See www.doh.gov.uk/research/documents/listof publications.htm
28 Organization Codes Service H andbook v2.2, D epartment of H ealth, London, M arch 1999.
29 See www.wellcome.ac.uk
30 DTI (1999) The UK R\&D Scoreboard, 1998. D epartment of Trade and Industry, London.
31 H orrobin D F (1990) 'The philosophical basis of peer review and the suppression of innovation', JAM A, 2623: 1438-1441.
32 Steptoe P (1985) 'H istorical aspects of the ethics of in vitro fertilization', Annals of the New York Academy of Sciences, 442: 573-576.
33 Human Fertilization and Embryology Authority (1998) Seventh Annual Report and Accounts. HEFA London.
34 GrantJ and Allen E (1999) 'Evaluating high risk research: an assessment of the Wellcome Trust's Sir Henry Wellcome Commemorative Awards for Innovative Research', Research Evaluation, 8: 201-204.
35 ComroeJ and Dripps R (1976) 'Scientific basis for the support of biomedical science', Science, 192: 105-111.
36 M ason B and Grant J (2000) Factors that lead to advances in neonatal intensive care - Comroe and D ripps revisited. Proceedings of S\&T 2000, Leiden, May 24-27.
37 Grant J and Lewison G (1997) 'Government funding of Research and D evelopment', Science, 278: 878-880.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior permission of the Welcome Trust.

ISBN 1841290351
Design and production: The Wellcome Trust Publishing D epartment First published 2001.
© The Truste of the Wellcome Trust, London, 2001
The WellcomeTrust is a registered charity, no. 210183
Trustee: The Wellcome Trust Limited
Registered in England, no. 2711000
Registered office: 183 Euston Road, London NW 1 2BE
TR16-2212/1500/03/-2001/M C

Putting N H S Research on the M ap
April 2001
All correspondence:
Jonathan Grant
Policy Unit
The W ellcomeTrust
210 Euston Road
London NW 1 2BE, UK
Tel: +44 (0)20 76118448
Fax: +44 (0)20 76118742
E-mail: j.grant@wellcome.ac.uk
Further copies of this report are available from:
The M arketing D epartment
The WellcomeTrust
183 Euston Road
London NW 1 2BE, UK
Tel: +44 (0)20 76118651
Fax: +44 (0)20 76118416
E-mail: marketing@wellcome.ac.uk
Web: www.wellcome.ac.uk

[^0]: ${ }^{C}$ The NHS ROD membership is paid for and managed by the R\&D Directorate of the London Regional 0 ffice of the NHSE.

[^1]: elt should be noted that since A pril 1998 NHS providers in receipt of NHS funds have been expected, by contract, to acknowledge the NHS R\&D funding stream.

[^2]: f These data are taken from the Research 0 utputs D atabase.
 g We have concentrated on the London region - the sponsors of the project.
 h It should be noted that both ROD and the NHS research outputs dataset are derived from the CD-ROM version of the SCI which has expanded in recent years to cover more journals. Thus some of the increase in publications will be an artifact of increased coverage, and this may impact one subfield more than another.

[^3]: j We make the assumption that papers without funding acknowledgement result from 'own account' funds. However, we are aware that other funding sources may also contribute to funding this research, e.g. Higher Education Funding Council allocations.

[^4]: k This is calculated from Table 4.4 of the Science Engineering and Technology Statistics 1999 (reference 2).

[^5]: RL 1 = clinical observation; RL 2 = clinical mix; RL 3 = clinical investigation; and RL $4=$ basic
 AAPG $=$ Average Annual Percentage Growth

[^6]: m This estimate is based on a combined Budget 1 and 2 expenditure of $£ 410 \mathrm{~m}$ in $1996 / 7$, deflated by 5% per year for the preceding eight years.
 n This is the recently adopted language used in the Department of Health report, Research and Development for a First Class Service (reference 19).
 0 This is hard to estimate but 37% of Culyer projects in $1995 / 6$ recorded some non-commercial external funding.
 p Although, in theory at least, instruments such as quality-adjusted life years could be used.

[^7]: q Previous multivariate analysis (reference 20) confirms that the association between impact, authorship and funding still holds, even when other factors have been controlled for.

[^8]: a Prior to 1996, R\&D expenditure in the NHS was not known. Following the Culyer report, during 1996 N HSTrusts were asked to declare their R\&D costs for the 1995/96 financial year. This in effect established Budget 1 of the Levy (see Box C). Budget 2 was established from the returns provided by the regions and HQ giving spend on activity supporting R\&D funded by the NHSE. In this example we have deflated the combined Budget 1 and 2 by 5% to estimate NHS R\&D expenditure for 1995.
 b In January 1999 the NHS regions were reorganized, thus the figures for Eastern, London and the South East are estimated based on the deflated figures for Anglia and O xford, N orth Thames and South Thames.

[^9]: r Professor Martin Buxton, Health Economics Research Group, Brunel University, Uxbridge UB8 3PH.

