Initiatives for Addressing Antimicrobial Resistance in the Environment

Executive Summary
This executive summary highlights key themes from a scientific white paper and discussion at the International Environmental Antimicrobial Resistance (AMR) Forum, a meeting hosted by the U.S. Centers for Disease Control and Prevention, the U.K. Science and Innovation Network, and the Wellcome Trust in April 2018.

This meeting gathered international technical experts, government officials, and other key stakeholders to outline the current knowledge of how resistant microbes and antimicrobials from multiple sources—human and animal waste, antimicrobial manufacturing, and the use of antimicrobials as pesticides—contribute to the presence of resistant microbes and antimicrobials in the environment, the potential impact of the affected environment on human health, and potential next steps to address the risks posed.

This executive summary is supported by the scientific white paper Initiatives for Addressing Antimicrobial Resistance in the Environment: Current Situation and Challenges, which was drafted by experts in this field and published alongside this executive summary in 2018, available online at: https://wellcome.ac.uk/sites/default/files/antimicrobial-resistance-environment-report.pdf

Graphics in this report were selected from illustrated minutes produced at the International Environmental AMR Forum by Sam Bradd, Drawing Change.
Key Points

- Antimicrobial resistance (AMR)—when microbes (i.e., bacteria and fungi) develop the ability to defeat the drugs designed to combat them—is a public health threat and global priority. Resistant pathogens can cause infections in humans that are difficult or impossible to treat.

- Scientific evidence shows that antimicrobials and antimicrobial-resistant microbes are present and can persist and travel (spread) through the environment (waterways and soils). Human activity can contaminate the environment with antimicrobials and antimicrobial-resistant microbes, which can accelerate the development and spread of resistance.

- Contamination can occur from human and animal waste, pharmaceutical manufacturing waste, and use of antimicrobial pesticides for crops; however, the scale and risk associated with this contamination is not fully understood. There are outstanding scientific questions related to the presence and impact of antimicrobial-resistant microbes in the environment and the direct risk posed to human health.

- The environment is a key element of the One Health framework. It is necessary to better understand risks, prioritize action to address antimicrobial-resistant microbes in the environment where potential risks to human health are greatest, and cultivate a collaborative global approach.

- Scientific review suggests that there are actions that could improve understanding and guide action:
 - A better understanding of hospital waste treatment in different global settings is a priority, requiring establishment of evidence-based waste standards and implementation of effective waste management practices and capabilities where interventions are most needed.
 - Good hygiene and sanitation, including effective waste disposal and treatment, are important ways to mitigate the risk of antimicrobial-resistant microbes in the environment associated with human waste and wastewater contamination.
 - When feasible, contamination by animal waste could be reduced by improving antimicrobial use, developing alternative disease control methods (e.g., vaccines), and improving the quality of the rearing environment to help reduce the need for antimicrobials.
 - Agreement on a discharge limit for effluents leaving manufacturing sites and standardized monitoring and reporting of effluent levels could significantly reduce contamination and potential human health risks associated with exposure to resistant microbes in the environment.
 - Potential risks from using antimicrobials on crops could be reduced through greater global transparency of antimicrobial use, implementation of best management practices when applying antimicrobials as pesticides, and greater use of alternative disease prevention and treatment strategies.

- To maximize potential impact, align activities to address antimicrobial-resistant microbes in the environment (e.g., addressing knowledge gaps) with existing global public health and development efforts, such as Sustainable Development Goals; the Water, Sanitation and Hygiene Initiative; and the Global Health Security Agenda.
Antimicrobial resistance (AMR) — when microbes (germs) develop the ability to defeat the drugs designed to combat them — is a threat to public health and a priority across the globe. To date, AMR scientific research and actions by governments, civil society, and other stakeholders have prioritized focus on antimicrobial use (i.e., antibiotics, antifungals) and preventing spread of antimicrobial-resistant microbes in humans and animals. Recently, the focus has expanded to include the role of the natural environment, including in waterways and soils. However, global activity on this topic is still limited, including planned activity represented in national action plans. More research is needed to address knowledge gaps and evaluate the potential risk that antimicrobials and resistant microbes in the environment pose to human health and the broader environmental ecosystem.

Scientific evidence shows that antimicrobials and antimicrobial-resistant microbes that can cause infections (pathogens) can be present in the environment. Resistant microbes can also persist and travel (spread) through the environment. For example, bodies of water can act as reservoirs, a place where microbes can adapt, grow, and multiply without hindrance, creating an environment in which resistant strains can thrive. If antimicrobial-resistant pathogens are present in environmental waters, then people exposed to the water can be at increased risk of infection. However, there are a number of outstanding scientific questions as to how resistance develops and spreads in the environment and the specific risks resistant microbes in the environment poses to human health.

When antimicrobials or resistant microbes are introduced into the environment, there is an opportunity for these elements to interact with other microbes, including those naturally occurring in these settings. This can accelerate the development and spread of AMR through both the selective pressure applied by antimicrobials and the spread of resistance genes between microbes.

The full extent to which antimicrobial-resistant microbes and antimicrobials are found in the environment as a result of human activity is not fully understood. However, it is known that antimicrobials and resistant microbes can enter and contaminate the environment in several ways, including from:

- **Human and animal waste (i.e. feces):** Waste from people and animals can carry unmetabolized traces of previously consumed antimicrobials, including those that are clinically important in human medicine. Waste can also carry antimicrobial-resistant microbes and microbes with resistance genes that can be shared among other microbes.

- **Pharmaceutical manufacturing waste:** Release of active pharmaceutical ingredients into the environment can occur when antimicrobials are manufactured.

- **Antimicrobial pesticides for crops:** Some medically important antimicrobials are used on crops to prevent or treat plant diseases. The type and amount of antimicrobials used on crops varies by country.

- **Antimicrobial use for crops:** Some medically important antimicrobials are used on crops to prevent or treat plant diseases. The type and amount of antimicrobials used on crops varies by country.

- **Antimicrobial residue in water:** Antimicrobial residues in water can lead to an increase in AMR. AMR evolves through a process called natural selection, where organisms better adapted to their environment tend to survive and produce more offspring.

- **Antimicrobial use for crops:** Some medically important antimicrobials are used on crops to prevent or treat plant diseases. The type and amount of antimicrobials used on crops varies by country.

Antimicrobials are vital tools for health, but their use can lead to an increase in AMR. AMR evolves through a process called natural selection, where organisms better adapted to the environment tend to survive and produce more offspring.

Antimicrobials apply selective pressure to microbes. This is because while some microbes will be killed by the antimicrobial, others resist the effects of the drugs and survive. The resistant microbes that survive pass their resistance trait to their offspring and other microbes, creating more resistant microbes.

The more microbes are exposed to antimicrobials, the more likely it is that resistance traits are passed on and shared.

Human waste

Waste and wastewater can contribute to the development and spread of antimicrobial-resistant microbes in the environment, with the potential to negatively affect human health. Antimicrobial residue and microbes, including resistant microbes, exit the human body through waste (feces, urine). Human waste and wastewater (used water from fixtures, like toilets) carrying antimicrobials and resistant microbes are often discharged to bodies of water or land, and wastewater is reused in some cases. Studies have found detectable levels of resistant bacteria in surface waters (rivers, coastal waters) as a result of waste contamination, with some people who were exposed to these microbes through interaction with contaminated water becoming ill. Monitoring of human waste contamination is limited, particularly in areas where waste management infrastructure is not adequate.

Many countries face challenges in providing adequate sanitation — the ability to dispose of human waste safely and maintain hygienic conditions. In fact, globally, the majority of human waste is discharged directly into the environment without treatment. This includes open defecation and discarding untreated waste into waterways. Access to safe water, adequate sanitation, and proper hygiene education can mitigate resistant microbes in the environment and reduce illness and death from common illnesses like diarrhea and infections caused by resistant microbes.

A major component of adequate sanitation is the use of wastewater treatment plants (WWTPs), which reduce contaminants, such as microbes, in wastewater before discharge. However, WWTPs can fail to remove the necessary contaminants before they are discharged into the environment, particularly when the WWTPs are not maintained, have too much water volume (e.g., during a storm), or are based on out-of-date technology. In addition, there are questions as to whether traditional WWTPs can sufficiently remove antimicrobials or antimicrobial-resistant microbes, particularly when levels of antimicrobial or microbe contamination in the waste are high.

The presence of antimicrobial-resistant microbes in human waste is especially concerning when looking at treatment of wastewater from healthcare facilities like hospitals. Human-waste from healthcare facilities is a key source of antimicrobials and resistant microbes because patients at these facilities have some of the most resistant infections and are commonly prescribed antimicrobials. The combination of antimicrobials and resistant microbes in hospital waste streams allows these resistant microbes to grow in facility plumbing systems, such as sinks, and even inside WWTPs.

Healthcare facilities dispose of and treat wastewater differently, often dependent on the type, capacity, and location of the facility. Globally, this means that high levels of antimicrobials and antimicrobial-resistant pathogens might not always be treated sufficiently to avoid environmental contamination. A better understanding of hospital waste treatment in different global settings is a priority. Establishing evidence-based waste standards and developing waste management practices and capabilities would help address this need.

More research is needed to better understand and mitigate the development of resistant microbes from human waste. This includes wastewater assessments for resistant microbes to identify potential contamination and to evaluate WWTP effectiveness, especially when waste is delivered from higher risk locations like healthcare facilities. In some countries, there is also a need for development of wastewater treatment infrastructure and greater use of innovative wastewater treatment technologies that address AMR. Additionally, integrating activities to address AMR in the environment into existing public health initiatives, such as the Sustainable Development Goals’ or Water, Sanitation and Hygiene Initiative, will help in the effort to reduce environmental contamination and limit spread of resistant microbes, though this must be done in partnership with the local community.

https://sustainabledevelopment.un.org/partnership/?p=1665

Human and Animal Waste
Animal Waste & Aquaculture

Using manure containing antimicrobials or resistant microbes as fertilizer could contribute to the development and spread of resistant microbes through the environment. Animal waste is used as fertilizer on agricultural lands to help stimulate plant growth and maintain productive soils. However, similar to human waste, manure from food-producing animals that have been treated with antimicrobials can carry antimicrobial residue and resistant microbes, which could potentially contaminate the surrounding soil and nearby water sources. Further research is needed to fully determine the effects of animal waste contamination on human health and the broader environmental ecosystem, though there are known cases of people becoming ill from a resistant pathogen through contact with food animals or their manure.

Antimicrobials are also used worldwide in aquaculture, the farming of fish and seafood, to control disease. Aquaculture supplies more than half of all global seafood, and using antimicrobials in these settings could lead to antimicrobial-resistant microbes that affect human health, though the direct risk continues to be unclear. In aquaculture, antimicrobials are generally administered in feed or occasionally through bath treatments, potentially contaminating the local aquatic environment with antimicrobial residue through fish waste matter and discharge of dissolved antimicrobials into the water column. This form of antimicrobial use, if not practiced sustainably, could drive resistance development. Data on antimicrobial use is limited for fish farming. For example, estimates of total sales and exact antimicrobial use is not always available, which can make it difficult to conduct comprehensive risk assessments based on how use could impact the environment and human health.

Contamination of the environment with animal and fish waste containing antimicrobial residue could be reduced through improving use of antimicrobials in animal agriculture and aquaculture. When feasible, long-term strategies that include the development of alternative disease control methods, such as vaccination-based strategies, could reduce reliance on antimicrobials without diminishing yield or quality of livestock produced. In addition, establishing better methods for early detection of disease and improving the quality of the rearing environment can help reduce the need for antimicrobials. These actions could help reduce the level of antimicrobial residue in waste to limit environmental contamination, and also support goals to improve stewardship of antimicrobials in animals. However, in some cases, work is needed to develop these methods and support their implementation in such a way that both animal welfare and business sustainability is maintained.

Addressing Knowledge Gaps

Scientific review suggests that the following actions could improve understanding and guide additional action. Unless specified, these apply to both human and animal waste.

Assessing Environmental Waters

- Assess where and how much resistant microbes are present in environmental waters to better understand the risk of antimicrobial-resistant microbes to human health.
- Conduct studies to understand the drivers of antimicrobial-resistant microbes in recreational and drinking water, including identifying sources of resistant pathogens (human or animal) and selective pressures driving amplification and transmission of antimicrobial-resistant microbes in these waters.
- Evaluate sampling strategies and testing methods to measure antimicrobial-resistant microbes in environmental waters to identify and standardize best practices.

Assessing and Improving Sanitation & Wastewater Treatment

- Evaluate the need for on-site pretreatment of wastewater for facilities that may contribute to antimicrobial-resistant microbes in the environment (e.g., hospitals) by conducting studies of the environment near waste discharge and assessing the impact of approaches to limit discharge of antimicrobial-resistant microbes and antimicrobials.
- Conduct studies to evaluate the effectiveness of existing wastewater treatment processing for removal of antimicrobial-resistant microbes and antimicrobials from wastewater before discharge into environmental waters, and investigate and identify factors that result in treatment inefficiencies and failures (e.g., ineffective processing methods or infrastructure failures).
- Improve sanitation globally by conducting research to identify efficient and affordable wastewater processing methods that are easily implemented where processing doesn’t currently exist or as enhancements to existing processing where levels of antimicrobial-resistant microbes are high.

Assessing the Environment Related to Agriculture

- Conduct research to identify and develop alternatives to antimicrobials to prevent and control disease on the farm and in aquaculture.
- Evaluate methods for treating animal manure and human waste biosolids when using as fertilizers on the farm to prevent environmental contamination with antimicrobial-resistant microbes and antimicrobials.
The manufacturing of antimicrobials by pharmaceutical companies can contribute to the development of antimicrobial-resistant microbes in the environment. In some cases, especially where regulations are lacking or not implemented, manufacturing process effluent (waste discharged into a body of water) can include antimicrobials, resistant microbes, and active pharmaceutical ingredients (APIs)—even after treatment—and might be discharged directly into the local environment.

For example, studies have found APIs in rivers, treated or untreated manufacturing wastewater, and sediment downstream of industrial wastewater treatment plants. The levels of antimicrobials and APIs found in the environment can be very high, with evidence to show that release of effluent can bring about an increase in levels of resistance in the local waters. The full extent to which antimicrobial-resistant microbes linked to manufacturing waste directly affects human health is not fully understood; however, this waste is an important and often neglected source of antimicrobials and of antimicrobial-resistant microbes in the environment, specifically in countries where antimicrobials are manufactured.

Eliminating or significantly reducing antimicrobial residue and other contaminants in manufacturing waste is a critical step in mitigating antimicrobial-resistant microbes in the environment. However, at this time, there are no globally agreed-upon and enforced standards to limit the level of contamination in manufacturing effluent because a “safe discharge limit” has not been established. In an effort to minimize the impact of antimicrobials discharged from manufacturing processes, some companies have set voluntary effluent limits as part of their own environmental risk-management strategies.

Data on the amount of APIs released in wastewater discharges is not publicly available, making it difficult to understand the full scope of the problem and determine an optimum risk management approach. At the same time, while methods to analyze APIs in discharged manufacturing wastes and in aquatic environments exist, an internationally recognized standard method is needed to feed into risk assessment and compare results from different factories. It is difficult to determine the extent of API contamination without these established standards.

Addressing these data and methodology gaps would help researchers identify risk to human health and guide viable and effective actions to mitigate this risk. As a priority, fostering global agreement on a discharge limit for effluents leaving manufacturing sites (i.e., not zero, but sufficiently low to be protective while still being technically achievable) and reporting effluent levels could significantly reduce environmental contamination. A subset of the industry has already provided leadership on best practices for responsible waste management, with several voluntary industry initiatives for responsible manufacturing and sourcing already underway. More action and collaboration across industry, academia, and governments is still needed to better understand and manage manufacturing waste.

Addressing Knowledge Gaps

Scientific review suggests that the following actions could improve understanding and guide additional action:

- Develop and validate standardized monitoring methods for testing antimicrobial agent runoff from the manufacturing process.
- Conduct pilot studies to evaluate the feasibility and cost of limiting discharge to discharge targets (i.e., discharge limits) proposed by scientific experts.
- Identify and evaluate incentives (e.g., green procurement) to reduce pharmaceutical manufacturing contaminants in a timely and effective way.
- Identify or develop strategies to limit environmental contamination in countries where antimicrobial manufacturing occurs, and work with industry partners, such as the AMR Industry Alliance, to evaluate and implement strategies.
Antimicrobials are commonly applied across the globe as pesticides to manage crop disease. These diseases can be difficult to control and extremely damaging, impacting the income of farms and the local and global food supply if left untreated. However, applying antimicrobials might accelerate the development and spread of antimicrobial-resistant microbes in the environment by contaminating the surrounding soil and water during application or subsequent runoff from farmland. While further research is needed to determine the effects of antimicrobial-based pesticides on human health and the broader environmental ecosystem, there are specific concerns for human health where antimicrobial pesticides are the same as, or closely related to, antimicrobials used in human medicine.

There is evidence of microbes developing resistance to antimicrobial pesticides, and, in some cases, these microbes also cause human infections. For example, triazole is the most widely used fungicide on crops, but it is also important in human medicine to prevent or treat fungal infections. Already some human triazole medications are no longer effective following the development of resistant fungi such as *Aspergillus fumigatus*. More data is needed to determine whether resistance may be linked to triazole use on crops.

Additionally, while copper formulations are not used in human medicine, their use as a pesticide may contribute to resistance to antimicrobials used in human medicine through co-selection pressure—when a gene carrying resistance to one antimicrobial results in resistance to several antimicrobials. There is also an increased risk to human health through the exposure of workers who apply antimicrobial pesticides. In some countries, pesticide applicators wear personal protective equipment, but there is limited knowledge on how effective the equipment is at minimizing exposure to the antimicrobial pesticide.

In terms of surveillance, comprehensive information is not collected globally on which antimicrobials are being used, where, and at what levels. Collecting, monitoring, and analyzing this data would greatly support the identification of possible links between antimicrobial pesticides and the emergence of resistant microbes that cause human infections. This data would also guide research to determine the impact of antimicrobial pesticides on the surrounding environment, including soil, water, plants, and animals.

Additionally, principles grounded in scientific evidence in national AMR action plans around antimicrobial pesticide use could be considered. Support is needed to identify and develop alternative disease prevention and treatment strategies, such as integrated pest management or modeling to predict high-risk periods for crop disease. These actions could help improve antimicrobial use and minimize exposure to humans and the surrounding environment, which would mitigate the potential risk to human health.

Antimicrobial Pesticides for Crops

Addressing Knowledge Gaps

Scientific review suggests that the following actions could improve understanding and guide additional action:

- Conduct research to better understand the impact of antimicrobial pesticide exposure on humans, animals, and the surrounding environment, and identify and promote best management practices when applying antimicrobials as pesticides to minimize exposure.
- Establish greater global transparency of antimicrobial use as pesticides by collecting and sharing information like the amount and type of antimicrobials used on crops each year.
- Share data between countries on the relative efficacy of antimicrobials as pesticides to guide pesticide application of antimicrobials used in human medicine so that they are considered only when there is evidence of efficacy and no alternatives are available.
- Conduct studies to develop efficacious and feasible alternatives to antimicrobials to prevent or treat crop disease and identify strategies to ensure that alternative treatments are available to growers.
- Identify and develop appropriate and reproducible methods to monitor the crop field and surrounding environment to determine if there are increases in antimicrobial resistance when medically important antimicrobials are used and when co-selection is a concern.
- Consider updating national action plans that address AMR to include antimicrobial stewardship principles for using antimicrobials as pesticides with actions that are based upon country-specific practices.
Environmental contamination by antimicrobials and resistant microbes presents a significant challenge to the global community. Scientific evidence shows that antimicrobials and antimicrobial-resistant pathogens are present in the environment, AMR spreads in the environment, and this form of environmental contamination might affect human health. Effective action is reliant on more scientific data to address the gaps and fully understand the potential risks posed by antimicrobials and resistant microbes in the environment. Specifically, greater clarity is needed on the risk to human health in order to prioritize action.

The scientific data should be built from standardized indicators, methods, and targets that measure and monitor antimicrobial contamination and resistance in different environmental settings. Conducting local AMR assessments of the environment and sharing data across countries and sectors can help to provide a more comprehensive understanding of antimicrobial-resistant microbes in the environment. Where possible, the assessment data should be integrated with data from public health surveillance programs.

As a key pillar of the One Health framework, the environment should be elevated on the global AMR agenda and better integrated into wider mitigation activities. Despite knowledge gaps, there is a need to better translate the evidence we do have into clear priorities that will support greater progress in addressing antimicrobial-resistant microbes in the environment. For example, there are a number of high-risk areas, such as disposal of waste from healthcare facilities and manufacturing, which could be prioritized and addressed on local and global levels to reduce potential risks to human health posed by antimicrobial-resistant microbes in the environment. In fact, there has been recognition by industry to establish recognizable discharge limits for effluent leaving manufacturing sites to address contamination and risk of antimicrobial-resistant microbes in the environment.

The threat of antimicrobial-resistant microbes in the environment is a global issue, but the incidence of environmental contamination varies greatly from country to country and region to region. As a shared global challenge, it will be important to have a globally led approach with locally relevant interventions. Moving forward, stakeholders can work to understand their local situation, determine what action is both beneficial and feasible, and move toward reducing identified risks to public health. This local action can be integrated with already-existing global public health collaborative efforts, such as the Sustainable Development Goals; the Water, Sanitation and Hygiene Initiative; and the Global Health Security Agenda. Alignment can help strengthen efforts and outcomes.

As understanding improves around antimicrobial-resistant microbes in the environment, and as collaboration enhances collective scientific knowledge and understanding of the risks posed, then best practices, recommendations, and actions that are most significant can be identified, further refined, and considered for wider adoption within national action plans and by the global community.

This executive summary and the supporting white paper—developed in partnership with the assembled technical experts that participated in the International Environmental AMR Forum in 2018—highlight data identifying the potential for the environment to be a source of antimicrobial-resistant microbes that can affect human health. They also highlight the significant knowledge gaps and measures that could be most important for mitigating risks. This information is intended to act as a guide for stakeholders, including researchers, nongovernmental organizations, and countries, to work in collaboration to fill knowledge gaps and improve national and international understanding on how to best evaluate and address antimicrobial-resistant microbes in the environment.
Wellcome is a global charitable foundation that exists to improve health for everyone.

The U.S. Centers for Disease Control and Prevention works 24/7 to protect America from health, safety and security threats, both foreign and in the U.S.

The UK Science and Innovation Network is a UK Government network of over 100 officers in 43 countries. SIN Officers represent the UK’s status as a global leader in science and innovation by promoting collaboration and cooperation between the UK and a range of countries, and their respective science and academic communities.