Computer programs may be able to identify individuals most at risk of anxiety and mood disorders

Computer programs can be taught to differentiate between the brain scans of healthy adolescents and those most at risk of developing psychiatric disorders, such as anxiety and depression, according to research published yesterday in the open access journal ‘PLoS ONE’. The research suggests that it may be possible to design programs that can accurately predict which at-risk adolescents will subsequently develop these disorders.

There are no known biomarkers - biological measures - that can accurately predict future psychiatric disorders in individual adolescents. Even genetic risk cannot accurately predict individual risk for future psychiatric illness: for example, a family history of bipolar disorder confers a 10 per cent risk of future bipolar disorder, as well as a 10 to 25 per cent risk of disorders such as attention deficit hyperactivity disorder, major depression and anxiety disorders, but it is impossible to accurately determine whether an individual will develop these disorders.

The early identification of individuals at high risk of future psychiatric illness is critical. Most psychiatric disorders typically have an onset in adolescence or early adulthood, and early detection and treatment could potentially delay, or even prevent, the onset of these illnesses in high-risk adolescents.

Now, a team of researchers led by Dr Janaina Mourao-Miranda, a Wellcome Trust Research Career Development Fellow at UCL (University College London), has shown that computer programs can distinguish between brain scans of healthy but genetically at-risk adolescents and healthy low-risk controls.

Sixteen healthy adolescents who each had a parent with bipolar disorder took part in the study, along with 16 healthy adolescents whose parents had no history of psychiatric illness. The adolescents performed an emotional face gender-labelling task in a functional magnetic resonance imaging (fMRI) scanner, which measures activity in the brain.

In the first experiment, the faces presented had happy or neutral expressions; in the second experiment, the faces had fearful or neutral expressions. The researchers then used a computer program capable of machine learning to predict the probability that an individual belonged to the low-risk or the at-risk group.

They found that the program was accurate in three out of four cases. The predictive probabilities were significantly higher for at-risk adolescents who subsequently developed a psychiatric disorder, such as anxiety and depression, than for those who remained healthy at follow-up. This suggests that it may be possible, in time, to develop a computer program able to identify those individuals at greatest risk of developing psychiatric disorders.

Interestingly, the researchers found that the best discrimination between at-risk and low-risk adolescents occurred when neutral faces were presented in the happy face experiment. This supports previous studies that suggest that individuals diagnosed with anxiety or mood disorders are more likely to perceive neutral faces as ambiguous or potentially threatening.

"Combining machine learning and neuroimaging, we have a technique which shows enormous potential to help us identify which adolescents are at true risk of developing anxiety and mood disorders, especially where there is limited clinical or genetic information," says Dr Mourao-Miranda.

Coauthor Professor Mary Phillips, from the Clinical and Translational Affective Neuroscience Program at University of Pittsburgh, adds: "Anxiety and mood disorders can have a devastating effect on the individuals concerned and on their families and friends. If we are able to identify those individuals at greatest risk early on, we can offer early and appropriate interventions to delay, or even prevent, onset of these terrible conditions."

The study was funded by the National Institute of Mental Health, the Wellcome Trust and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil).

Notes for editors

Reference

Mourao-Miranda J et al. Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS One 2012 (epub ahead of print).

The research involved a collaboration including Dr Janaina Mourao-Miranda (UCL), Dr Leticia Oliveira (Universidade Federal Fluminense, Brazil), Professor Mary L Phillips and Dr Cecile D Ladouceur (Clinical and Translational Affective Neuroscience Program), Professor Boris Birmaher's clinical team (University of Pittsburgh), and Professor Michael Brammer and Dr Andre Marquand (King's College London).

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world's top universities, as reflected by performance in a range of international rankings and tables. Alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 13 000 undergraduate and 9000 postgraduate students. Its annual income is over £700 million.

About King's College London

King’s College London is one of the top 30 universities in the world (2011/12 QS international world rankings), and was The Sunday Times 'University of the Year 2010/11', and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23 500 students (of whom more than 9000 are graduate students) from nearly 140 countries, and some 6000 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.